To ensure large language models contain up-to-date knowledge, they need to be updated regularly. However, model editing is challenging as it might also affect knowledge that is unrelated to the new data. State-of-the-art methods identify parameters associated with specific knowledge and then modify them via direct weight updates. However, these locate-and-edit methods suffer from heavy computational overhead and lack theoretical validation. In contrast, directly fine-tuning the model on requested edits affects the model’s behavior on unrelated knowledge, and significantly damages the model’s generation fluency and consistency. To address these challenges, we propose SAUL, a streamlined model editing method that uses sentence concatenation with augmented random facts for generation regularization. Evaluations on three model editing benchmarks show that is a practical and reliable solution for model editing outperforming state-of-the-art methods while maintaining generation quality and reducing computational overhead.
Temporal expression (TE) normalization is a well-studied problem. However, the predominately used rule-based systems are highly restricted to specific settings, and upcoming machine learning approaches suffer from a lack of labeled data. In this work, we explore the feasibility of proprietary and open-source large language models (LLMs) for TE normalization using in-context learning to inject task, document, and example information into the model. We explore various sample selection strategies to retrieve the most relevant set of examples. By using a window-based prompt design approach, we can perform TE normalization across sentences, while leveraging the LLM knowledge without training the model.Our experiments show competitive results to models designed for this task. In particular, our method achieves large performance improvements for non-standard settings by dynamically including relevant examples during inference.
Continual learning aims at incrementally acquiring new knowledge while not forgetting existing knowledge. To overcome catastrophic forgetting, methods are either rehearsal-based, i.e., store data examples from previous tasks for data replay, or isolate parameters dedicated to each task. However, rehearsal-based methods raise privacy and memory issues, and parameter-isolation continual learning does not consider interaction between tasks, thus hindering knowledge transfer. In this work, we propose MoCL, a rehearsal-free **Mo**dular and **C**ompositional Continual **L**earning framework which continually adds new modules to language models and composes them with existing modules. Experiments on various benchmarks show that MoCL outperforms state of the art and effectively facilitates knowledge transfer.
In real-world environments, continual learning is essential for machine learning models, as they need to acquire new knowledge incrementally without forgetting what they have already learned. While pretrained language models have shown impressive capabilities on various static tasks, applying them to continual learning poses significant challenges, including avoiding catastrophic forgetting, facilitating knowledge transfer, and maintaining parameter efficiency. In this paper, we introduce MoCL-P, a novel lightweight continual learning method that addresses these challenges simultaneously. Unlike traditional approaches that continuously expand parameters for newly arriving tasks, MoCL-P integrates task representation-guided module composition with adaptive pruning, effectively balancing knowledge integration and computational overhead. Our evaluation across three continual learning benchmarks with up to 176 tasks shows that MoCL-P achieves state-of-the-art performance and improves parameter efficiency by up to three times, demonstrating its potential for practical applications where resource requirements are constrained.
The detection and normalization of temporal expressions is an important task and preprocessing step for many applications. However, prior work on normalization is rule-based, which severely limits the applicability in real-world multilingual settings, due to the costly creation of new rules. We propose a novel neural method for normalizing temporal expressions based on masked language modeling. Our multilingual method outperforms prior rule-based systems in many languages, and in particular, for low-resource languages with performance improvements of up to 33 F1 on average compared to the state of the art.
Most languages of the world pose low-resource challenges to natural language processing models. With multilingual training, knowledge can be shared among languages. However, not all languages positively influence each other and it is an open research question how to select the most suitable set of languages for multilingual training and avoid negative interference among languages whose characteristics or data distributions are not compatible. In this paper, we propose GradSim, a language grouping method based on gradient similarity. Our experiments on three diverse multilingual benchmark datasets show that it leads to the largest performance gains compared to other similarity measures and it is better correlated with cross-lingual model performance. As a result, we set the new state of the art on AfriSenti, a benchmark dataset for sentiment analysis on low-resource African languages. In our extensive analysis, we further reveal that besides linguistic features, the topics of the datasets play an important role for language grouping and that lower layers of transformer models encode language-specific features while higher layers capture task-specific information.
Intermediate training of pre-trained transformer-based language models on domain-specific data leads to substantial gains for downstream tasks. To increase efficiency and prevent catastrophic forgetting alleviated from full domain-adaptive pre-training, approaches such as adapters have been developed. However, these require additional parameters for each layer, and are criticized for their limited expressiveness. In this work, we introduce TADA, a novel task-agnostic domain adaptation method which is modular, parameter-efficient, and thus, data-efficient. Within TADA, we retrain the embeddings to learn domain-aware input representations and tokenizers for the transformer encoder, while freezing all other parameters of the model. Then, task-specific fine-tuning is performed. We further conduct experiments with meta-embeddings and newly introduced meta-tokenizers, resulting in one model per task in multi-domain use cases. Our broad evaluation in 4 downstream tasks for 14 domains across single- and multi-domain setups and high- and low-resource scenarios reveals that TADA is an effective and efficient alternative to full domain-adaptive pre-training and adapters for domain adaptation, while not introducing additional parameters or complex training steps.
This paper describes our system developed for the SemEval-2023 Task 12 “Sentiment Analysis for Low-resource African Languages using Twitter Dataset”. Sentiment analysis is one of the most widely studied applications in natural language processing. However, most prior work still focuses on a small number of high-resource languages. Building reliable sentiment analysis systems for low-resource languages remains challenging, due to the limited training data in this task. In this work, we propose to leverage language-adaptive and task-adaptive pretraining on African texts and study transfer learning with source language selection on top of an African language-centric pretrained language model. Our key findings are: (1) Adapting the pretrained model to the target language and task using a small yet relevant corpus improves performance remarkably by more than 10 F1 score points. (2) Selecting source languages with positive transfer gains during training can avoid harmful interference from dissimilar languages, leading to better results in multilingual and cross-lingual settings. In the shared task, our system wins 8 out of 15 tracks and, in particular, performs best in the multilingual evaluation.
Patent Landscaping, one of the central tasks of intellectual property management, includes selecting and grouping patents according to user-defined technical or application-oriented criteria. While recent transformer-based models have been shown to be effective for classifying patents into taxonomies such as CPC or IPC, there is yet little research on how to support real-world Patent Landscape Studies (PLSs) using natural language processing methods. With this paper, we release three labeled datasets for PLS-oriented classification tasks covering two diverse domains. We provide a qualitative analysis and report detailed corpus statistics.Most research on neural models for patents has been restricted to leveraging titles and abstracts. We compare strong neural and non-neural baselines, proposing a novel model that takes into account textual information from the patents’ full texts as well as embeddings created based on the patents’ CPC labels. We find that for PLS-oriented classification tasks, going beyond title and abstract is crucial, CPC labels are an effective source of information, and combining all features yields the best results.
Entity linking disambiguates mentions by mapping them to entities in a knowledge graph (KG). One important question in today’s research is how to extend neural entity linking systems to new domains. In this paper, we aim at a system that enables linking mentions to entities from a general-domain KG and a domain-specific KG at the same time. In particular, we represent the entities of different KGs in a joint vector space and address the questions of which data is best suited for creating and fine-tuning that space, and whether fine-tuning harms performance on the general domain. We find that a combination of data from both the general and the special domain is most helpful. The first is especially necessary for avoiding performance loss on the general domain. While additional supervision on entities that appear in both KGs performs best in an intrinsic evaluation of the vector space, it has less impact on the downstream task of entity linking.
Combining several embeddings typically improves performance in downstream tasks as different embeddings encode different information. It has been shown that even models using embeddings from transformers still benefit from the inclusion of standard word embeddings. However, the combination of embeddings of different types and dimensions is challenging. As an alternative to attention-based meta-embeddings, we propose feature-based adversarial meta-embeddings (FAME) with an attention function that is guided by features reflecting word-specific properties, such as shape and frequency, and show that this is beneficial to handle subword-based embeddings. In addition, FAME uses adversarial training to optimize the mappings of differently-sized embeddings to the same space. We demonstrate that FAME works effectively across languages and domains for sequence labeling and sentence classification, in particular in low-resource settings. FAME sets the new state of the art for POS tagging in 27 languages, various NER settings and question classification in different domains.
In low-resource settings, model transfer can help to overcome a lack of labeled data for many tasks and domains. However, predicting useful transfer sources is a challenging problem, as even the most similar sources might lead to unexpected negative transfer results. Thus, ranking methods based on task and text similarity — as suggested in prior work — may not be sufficient to identify promising sources. To tackle this problem, we propose a new approach to automatically determine which and how many sources should be exploited. For this, we study the effects of model transfer on sequence labeling across various domains and tasks and show that our methods based on model similarity and support vector machines are able to predict promising sources, resulting in performance increases of up to 24 F1 points.
Deep neural networks and huge language models are becoming omnipresent in natural language applications. As they are known for requiring large amounts of training data, there is a growing body of work to improve the performance in low-resource settings. Motivated by the recent fundamental changes towards neural models and the popular pre-train and fine-tune paradigm, we survey promising approaches for low-resource natural language processing. After a discussion about the different dimensions of data availability, we give a structured overview of methods that enable learning when training data is sparse. This includes mechanisms to create additional labeled data like data augmentation and distant supervision as well as transfer learning settings that reduce the need for target supervision. A goal of our survey is to explain how these methods differ in their requirements as understanding them is essential for choosing a technique suited for a specific low-resource setting. Further key aspects of this work are to highlight open issues and to outline promising directions for future research.
Exploiting natural language processing in the clinical domain requires de-identification, i.e., anonymization of personal information in texts. However, current research considers de-identification and downstream tasks, such as concept extraction, only in isolation and does not study the effects of de-identification on other tasks. In this paper, we close this gap by reporting concept extraction performance on automatically anonymized data and investigating joint models for de-identification and concept extraction. In particular, we propose a stacked model with restricted access to privacy sensitive information and a multitask model. We set the new state of the art on benchmark datasets in English (96.1% F1 for de-identification and 88.9% F1 for concept extraction) and Spanish (91.4% F1 for concept extraction).
Recent work showed that embeddings from related languages can improve the performance of sequence tagging, even for monolingual models. In this analysis paper, we investigate whether the best auxiliary language can be predicted based on language distances and show that the most related language is not always the best auxiliary language. Further, we show that attention-based meta-embeddings can effectively combine pre-trained embeddings from different languages for sequence tagging and set new state-of-the-art results for part-of-speech tagging in five languages.
Although temporal tagging is still dominated by rule-based systems, there have been recent attempts at neural temporal taggers. However, all of them focus on monolingual settings. In this paper, we explore multilingual methods for the extraction of temporal expressions from text and investigate adversarial training for aligning embedding spaces to one common space. With this, we create a single multilingual model that can also be transferred to unseen languages and set the new state of the art in those cross-lingual transfer experiments.
Attributing a particular property to a person by naming another person, who is typically wellknown for the respective property, is called a Vossian Antonomasia (VA). This subtpye of metonymy, which overlaps with metaphor, has a specific syntax and is especially frequent in journalistic texts. While identifying Vossian Antonomasia is of particular interest in the study of stylistics, it is also a source of errors in relation and fact extraction as an explicitly mentioned entity occurs only metaphorically and should not be associated with respective contexts. Despite rather simple syntactic variations, the automatic extraction of VA was never addressed as yet since it requires a deeper semantic understanding of mentioned entities and underlying relations. In this paper, we propose a first method for the extraction of VAs that works completely automatically. Our approaches use named entity recognition, distant supervision based on Wikidata, and a bi-directional LSTM for postprocessing. The evaluation on 1.8 million articles of the New York Times corpus shows that our approach significantly outperforms the only existing semi-automatic approach for VA identification by more than 30 percentage points in precision.
Named entity recognition has been extensively studied on English news texts. However, the transfer to other domains and languages is still a challenging problem. In this paper, we describe the system with which we participated in the first subtrack of the PharmaCoNER competition of the BioNLP Open Shared Tasks 2019. Aiming at pharmacological entity detection in Spanish texts, the task provides a non-standard domain and language setting. However, we propose an architecture that requires neither language nor domain expertise. We treat the task as a sequence labeling task and experiment with attention-based embedding selection and the training on automatically annotated data to further improve our system’s performance. Our system achieves promising results, especially by combining the different techniques, and reaches up to 88.6% F1 in the competition.
Named Entity Disambiguation (NED) systems perform well on news articles and other texts covering a specific time interval. However, NED quality drops when inputs span long time periods like in archives or historic corpora. This paper presents the first time-aware method for NED that resolves ambiguities even when mention contexts give only few cues. The method is based on computing temporal signatures for entities and comparing these to the temporal contexts of input mentions. Our experiments show superior quality on a newly created diachronic corpus.
GATE is a widely used open-source solution for text processing with a large user community. It contains components for several natural language processing tasks. However, temporal information extraction functionality within GATE has been rather limited so far, despite being a prerequisite for many application scenarios in the areas of natural language processing and information retrieval. This paper presents an integrated approach to temporal information processing. We take state-of-the-art tools in temporal expression and event recognition and bring them together to form an openly-available resource within the GATE infrastructure. GATE-Time provides annotation in the form of TimeML events and temporal expressions complying with this mature ISO standard for temporal semantic annotation of documents. Major advantages of GATE-Time are (i) that it relies on HeidelTime for temporal tagging, so that temporal expressions can be extracted and normalized in multiple languages and across different domains, (ii) it includes a modern, fast event recognition and classification tool, and (iii) that it can be combined with different linguistic pre-processing annotations, and is thus not bound to license restricted preprocessing components.
Computational Narratology is an emerging field within the Digital Humanities. In this paper, we tackle the problem of extracting temporal information as a basis for event extraction and ordering, as well as further investigations of complex phenomena in narrative texts. While most existing systems focus on news texts and extract explicit temporal information exclusively, we show that this approach is not feasible for narratives. Based on tense information of verbs, we define temporal clusters as an annotation task and validate the annotation schema by showing that the task can be performed with high inter-annotator agreement. To alleviate and reduce the manual annotation effort, we propose a rule-based approach to robustly extract temporal clusters using a multi-layered and dynamic NLP pipeline that combines off-the-shelf components in a heuristic setting. Comparing our results against human judgements, our system is capable of predicting the tense of verbs and sentences with very high reliability: for the most prevalent tense in our corpus, more than 95% of all verbs are annotated correctly.
Research on temporal tagging has achieved a lot of attention during the last years. However, most of the work focuses on processing news-style documents. Thus, references to historic dates are often not well handled by temporal taggers although they frequently occur in narrative-style documents about history, e.g., in many Wikipedia articles. In this paper, we present the AncientTimes corpus containing documents about different historic time periods in eight languages, in which we manually annotated temporal expressions. Based on this corpus, we explain the challenges of temporal tagging documents about history. Furthermore, we use the corpus to extend our multilingual, cross-domain temporal tagger HeidelTime to extract and normalize temporal expressions referring to historic dates, and to demonstrate HeidelTime’s new capabilities. Both, the AncientTimes corpus as well as the new HeidelTime version are made publicly available.
In the last years, temporal tagging has received increasing attention in the area of natural language processing. However, most of the research so far concentrated on processing news documents. Only recently, two temporal annotated corpora of narrative-style documents were developed, and it was shown that a domain shift results in significant challenges for temporal tagging. Thus, a temporal tagger should be aware of the domain associated with documents that are to be processed and apply domain-specific strategies for extracting and normalizing temporal expressions. In this paper, we analyze the characteristics of temporal expressions in different domains. In addition to news- and narrative-style documents, we add two further document types, namely colloquial and scientific documents. After discussing the challenges of temporal tagging on the different domains, we describe some strategies to tackle these challenges and describe their integration into our publicly available temporal tagger HeidelTime. Our cross-domain evaluation validates the benefits of domain-sensitive temporal tagging. Furthermore, we make available two new temporally annotated corpora and a new version of HeidelTime, which now distinguishes between four document domain types.