In recent years, Pre-trained Language Models (PLMs) have shown their superiority by pre-training on unstructured text corpus and then fine-tuning on downstream tasks. On entity-rich textual resources like Wikipedia, Knowledge-Enhanced PLMs (KEPLMs) incorporate the interactions between tokens and mentioned entities in pre-training, and are thus more effective on entity-centric tasks such as entity linking and relation classification. Although exploiting Wikipedia’s rich structures to some extent, conventional KEPLMs still neglect a unique layout of the corpus where each Wikipedia page is around a topic entity (identified by the page URL and shown in the page title). In this paper, we demonstrate that KEPLMs without incorporating the topic entities will lead to insufficient entity interaction and biased (relation) word semantics. We thus propose KEPLET, a novel Knowledge-Énhanced Pre-trained LanguagE model with Topic entity awareness. In an end-to-end manner, KEPLET identifies where to add the topic entity’s information in a Wikipedia sentence, fuses such information into token and mentioned entities representations, and supervises the network learning, through which it takes topic entities back into consideration. Experiments demonstrated the generality and superiority of KEPLET which was applied to two representative KEPLMs, achieving significant improvements on four entity-centric tasks.
Integrating extracted knowledge from the Web to knowledge graphs (KGs) can facilitate tasks like question answering. We study relation integration that aims to align free-text relations in subject-relation-object extractions to relations in a target KG. To address the challenge that free-text relations are ambiguous, previous methods exploit neighbor entities and relations for additional context. However, the predictions are made independently, which can be mutually inconsistent. We propose a two-stage Collective Relation Integration (CoRI) model, where the first stage independently makes candidate predictions, and the second stage employs a collective model that accesses all candidate predictions to make globally coherent predictions. We further improve the collective model with augmented data from the portion of the target KG that is otherwise unused. Experiment results on two datasets show that CoRI can significantly outperform the baselines, improving AUC from .677 to .748 and from .716 to .780, respectively.
Conditional Text Generation has drawn much attention as a topic of Natural Language Generation (NLG) which provides the possibility for humans to control the properties of generated contents. Current conditional generation models cannot handle emerging conditions due to their joint end-to-end learning fashion. When a new condition added, these techniques require full retraining. In this paper, we present a new framework named Pre-train and Plug-in Variational Auto-Encoder (PPVAE) towards flexible conditional text generation. PPVAE decouples the text generation module from the condition representation module to allow “one-to-many” conditional generation. When a fresh condition emerges, only a lightweight network needs to be trained and works as a plug-in for PPVAE, which is efficient and desirable for real-world applications. Extensive experiments demonstrate the superiority of PPVAE against the existing alternatives with better conditionality and diversity but less training effort.
Hypernymy detection, a.k.a, lexical entailment, is a fundamental sub-task of many natural language understanding tasks. Previous explorations mostly focus on monolingual hypernymy detection on high-resource languages, e.g., English, but few investigate the low-resource scenarios. This paper addresses the problem of low-resource hypernymy detection by combining high-resource languages. We extensively compare three joint training paradigms and for the first time propose applying meta learning to relieve the low-resource issue. Experiments demonstrate the superiority of our method among the three settings, which substantially improves the performance of extremely low-resource languages by preventing over-fitting on small datasets.
We address hypernymy detection, i.e., whether an is-a relationship exists between words (x ,y), with the help of large textual corpora. Most conventional approaches to this task have been categorized to be either pattern-based or distributional. Recent studies suggest that pattern-based ones are superior, if large-scale Hearst pairs are extracted and fed, with the sparsity of unseen (x ,y) pairs relieved. However, they become invalid in some specific sparsity cases, where x or y is not involved in any pattern. For the first time, this paper quantifies the non-negligible existence of those specific cases. We also demonstrate that distributional methods are ideal to make up for pattern-based ones in such cases. We devise a complementary framework, under which a pattern-based and a distributional model collaborate seamlessly in cases which they each prefer. On several benchmark datasets, our framework demonstrates improvements that are both competitive and explainable.
Hypertext documents, such as web pages and academic papers, are of great importance in delivering information in our daily life. Although being effective on plain documents, conventional text embedding methods suffer from information loss if directly adapted to hyper-documents. In this paper, we propose a general embedding approach for hyper-documents, namely, hyperdoc2vec, along with four criteria characterizing necessary information that hyper-document embedding models should preserve. Systematic comparisons are conducted between hyperdoc2vec and several competitors on two tasks, i.e., paper classification and citation recommendation, in the academic paper domain. Analyses and experiments both validate the superiority of hyperdoc2vec to other models w.r.t. the four criteria.
With the development of medical information management, numerous medical data are being classified, indexed, and searched in various systems. Disease phrase matching, i.e., deciding whether two given disease phrases interpret each other, is a basic but crucial preprocessing step for the above tasks. Being capable of relieving the scarceness of annotations, domain adaptation is generally considered useful in medical systems. However, efforts on applying it to phrase matching remain limited. This paper presents a domain-adaptive matching network for disease phrases. Our network achieves domain adaptation by adversarial training, i.e., preferring features indicating whether the two phrases match, rather than which domain they come from. Experiments suggest that our model has the best performance among the very few non-adaptive or adaptive methods that can benefit from out-of-domain annotations.
Chinese spelling check (CSC) is a challenging yet meaningful task, which not only serves as a preprocessing in many natural language processing(NLP) applications, but also facilitates reading and understanding of running texts in peoples’ daily lives. However, to utilize data-driven approaches for CSC, there is one major limitation that annotated corpora are not enough in applying algorithms and building models. In this paper, we propose a novel approach of constructing CSC corpus with automatically generated spelling errors, which are either visually or phonologically resembled characters, corresponding to the OCR- and ASR-based methods, respectively. Upon the constructed corpus, different models are trained and evaluated for CSC with respect to three standard test sets. Experimental results demonstrate the effectiveness of the corpus, therefore confirm the validity of our approach.