Jingfang Xu


2021

pdf bib
Transfer Learning for Sequence Generation: from Single-source to Multi-source
Xuancheng Huang | Jingfang Xu | Maosong Sun | Yang Liu
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Multi-source sequence generation (MSG) is an important kind of sequence generation tasks that takes multiple sources, including automatic post-editing, multi-source translation, multi-document summarization, etc. As MSG tasks suffer from the data scarcity problem and recent pretrained models have been proven to be effective for low-resource downstream tasks, transferring pretrained sequence-to-sequence models to MSG tasks is essential. Although directly finetuning pretrained models on MSG tasks and concatenating multiple sources into a single long sequence is regarded as a simple method to transfer pretrained models to MSG tasks, we conjecture that the direct finetuning method leads to catastrophic forgetting and solely relying on pretrained self-attention layers to capture cross-source information is not sufficient. Therefore, we propose a two-stage finetuning method to alleviate the pretrain-finetune discrepancy and introduce a novel MSG model with a fine encoder to learn better representations in MSG tasks. Experiments show that our approach achieves new state-of-the-art results on the WMT17 APE task and multi-source translation task using the WMT14 test set. When adapted to document-level translation, our framework outperforms strong baselines significantly.

pdf bib
Multi-Lingual Question Generation with Language Agnostic Language Model
Bingning Wang | Ting Yao | Weipeng Chen | Jingfang Xu | Xiaochuan Wang
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2020

pdf bib
A Self-Training Method for Machine Reading Comprehension with Soft Evidence Extraction
Yilin Niu | Fangkai Jiao | Mantong Zhou | Ting Yao | Jingfang Xu | Minlie Huang
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Neural models have achieved great success on machine reading comprehension (MRC), many of which typically consist of two components: an evidence extractor and an answer predictor. The former seeks the most relevant information from a reference text, while the latter is to locate or generate answers from the extracted evidence. Despite the importance of evidence labels for training the evidence extractor, they are not cheaply accessible, particularly in many non-extractive MRC tasks such as YES/NO question answering and multi-choice MRC. To address this problem, we present a Self-Training method (STM), which supervises the evidence extractor with auto-generated evidence labels in an iterative process. At each iteration, a base MRC model is trained with golden answers and noisy evidence labels. The trained model will predict pseudo evidence labels as extra supervision in the next iteration. We evaluate STM on seven datasets over three MRC tasks. Experimental results demonstrate the improvement on existing MRC models, and we also analyze how and why such a self-training method works in MRC.

2019

pdf bib
A Compact and Language-Sensitive Multilingual Translation Method
Yining Wang | Long Zhou | Jiajun Zhang | Feifei Zhai | Jingfang Xu | Chengqing Zong
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Multilingual neural machine translation (Multi-NMT) with one encoder-decoder model has made remarkable progress due to its simple deployment. However, this multilingual translation paradigm does not make full use of language commonality and parameter sharing between encoder and decoder. Furthermore, this kind of paradigm cannot outperform the individual models trained on bilingual corpus in most cases. In this paper, we propose a compact and language-sensitive method for multilingual translation. To maximize parameter sharing, we first present a universal representor to replace both encoder and decoder models. To make the representor sensitive for specific languages, we further introduce language-sensitive embedding, attention, and discriminator with the ability to enhance model performance. We verify our methods on various translation scenarios, including one-to-many, many-to-many and zero-shot. Extensive experiments demonstrate that our proposed methods remarkably outperform strong standard multilingual translation systems on WMT and IWSLT datasets. Moreover, we find that our model is especially helpful in low-resource and zero-shot translation scenarios.

pdf bib
Learning to Copy for Automatic Post-Editing
Xuancheng Huang | Yang Liu | Huanbo Luan | Jingfang Xu | Maosong Sun
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Automatic post-editing (APE), which aims to correct errors in the output of machine translation systems in a post-processing step, is an important task in natural language processing. While recent work has achieved considerable performance gains by using neural networks, how to model the copying mechanism for APE remains a challenge. In this work, we propose a new method for modeling copying for APE. To better identify translation errors, our method learns the representations of source sentences and system outputs in an interactive way. These representations are used to explicitly indicate which words in the system outputs should be copied. Finally, CopyNet (Gu et.al., 2016) can be combined with our method to place the copied words in correct positions in post-edited translations. Experiments on the datasets of the WMT 2016-2017 APE shared tasks show that our approach outperforms all best published results.

2018

pdf bib
Improving the Transformer Translation Model with Document-Level Context
Jiacheng Zhang | Huanbo Luan | Maosong Sun | Feifei Zhai | Jingfang Xu | Min Zhang | Yang Liu
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Although the Transformer translation model (Vaswani et al., 2017) has achieved state-of-the-art performance in a variety of translation tasks, how to use document-level context to deal with discourse phenomena problematic for Transformer still remains a challenge. In this work, we extend the Transformer model with a new context encoder to represent document-level context, which is then incorporated into the original encoder and decoder. As large-scale document-level parallel corpora are usually not available, we introduce a two-step training method to take full advantage of abundant sentence-level parallel corpora and limited document-level parallel corpora. Experiments on the NIST Chinese-English datasets and the IWSLT French-English datasets show that our approach improves over Transformer significantly.

pdf bib
Three Strategies to Improve One-to-Many Multilingual Translation
Yining Wang | Jiajun Zhang | Feifei Zhai | Jingfang Xu | Chengqing Zong
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Due to the benefits of model compactness, multilingual translation (including many-to-one, many-to-many and one-to-many) based on a universal encoder-decoder architecture attracts more and more attention. However, previous studies show that one-to-many translation based on this framework cannot perform on par with the individually trained models. In this work, we introduce three strategies to improve one-to-many multilingual translation by balancing the shared and unique features. Within the architecture of one decoder for all target languages, we first exploit the use of unique initial states for different target languages. Then, we employ language-dependent positional embeddings. Finally and especially, we propose to divide the hidden cells of the decoder into shared and language-dependent ones. The extensive experiments demonstrate that our proposed methods can obtain remarkable improvements over the strong baselines. Moreover, our strategies can achieve comparable or even better performance than the individually trained translation models.

2017

pdf bib
Prior Knowledge Integration for Neural Machine Translation using Posterior Regularization
Jiacheng Zhang | Yang Liu | Huanbo Luan | Jingfang Xu | Maosong Sun
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Although neural machine translation has made significant progress recently, how to integrate multiple overlapping, arbitrary prior knowledge sources remains a challenge. In this work, we propose to use posterior regularization to provide a general framework for integrating prior knowledge into neural machine translation. We represent prior knowledge sources as features in a log-linear model, which guides the learning processing of the neural translation model. Experiments on Chinese-English dataset show that our approach leads to significant improvements.