Khanh Nguyen


2024

pdf bib
Rethinking Skill Extraction in the Job Market Domain using Large Language Models
Khanh Nguyen | Mike Zhang | Syrielle Montariol | Antoine Bosselut
Proceedings of the First Workshop on Natural Language Processing for Human Resources (NLP4HR 2024)

Skill Extraction involves identifying skills and qualifications mentioned in documents such as job postings and resumes. The task is commonly tackled by training supervised models using a sequence labeling approach with BIO tags. However, the reliance on manually annotated data limits the generalizability of such approaches. Moreover, the common BIO setting limits the ability of the models to capture complex skill patterns and handle ambiguous mentions. In this paper, we explore the use of in-context learning to overcome these challenges, on a benchmark of 6 uniformized skill extraction datasets. Our approach leverages the few-shot learning capabilities of large language models (LLMs) to identify and extract skills from sentences. We show that LLMs, despite not being on par with traditional supervised models in terms of performance, can better handle syntactically complex skill mentions in skill extraction tasks.

pdf bib
Language-guided World Models: A Model-based Approach to AI Control
Alex Zhang | Khanh Nguyen | Jens Tuyls | Albert Lin | Karthik Narasimhan
Proceedings of the 4th Workshop on Spatial Language Understanding and Grounded Communication for Robotics (SpLU-RoboNLP 2024)

Developing internal world models for artificial agents opens an efficient channel for humans to communicate with and control them. In addition to updating policies, humans can modify the world models of these agents in order to influence their decisions.The challenge, however, is that currently existing world models are difficult for humans to adapt because they lack a natural communication interface. Aimed at addressing this shortcoming, we develop *Language-Guided World Models* (LWMs), which can capture environment dynamics by reading language descriptions. These models enhance agent communication efficiency, allowing humans to simultaneously alter their behavior on multiple tasks with concise language feedback. They also enable agents to self-learn from texts originally written to instruct humans. To facilitate the development of LWMs, we design a challenging benchmark based on the game of MESSENGER (Hanjie et al., 2021), requiring compositional generalization to new language descriptions and environment dynamics. Our experiments reveal that the current state-of-the-art Transformer architecture performs poorly on this benchmark, motivating us to design a more robust architecture. To showcase the practicality of our proposed LWMs, we simulate a scenario where these models augment the interpretability and safety of an agent by enabling it to generate and discuss plans with a human before execution. By effectively incorporating language feedback on the plan, the models boost the agent performance in the real environment by up to three times without collecting any interactive experiences in this environment.

2023

pdf bib
Define, Evaluate, and Improve Task-Oriented Cognitive Capabilities for Instruction Generation Models
Lingjun Zhao | Khanh Nguyen | Hal Daumé III
Findings of the Association for Computational Linguistics: ACL 2023

Recent work studies the cognitive capabilities of language models through psychological tests designed for humans. While these studies are helpful for understanding the general capabilities of these models, there is no guarantee that a model possessing sufficient capabilities to pass those tests would actually use those capabilities in performing real-life tasks. In this work, we formulate task-oriented cognitive capabilities, which are human-like cognitive capabilities that language models leverage to perform tasks. These capabilities are (i) the ability to quickly generate good candidate utterances (the search capability) (ii) the ability to predict how a listener interprets those utterances and choose the most appropriate one (the pragmatic capability). We design an evaluation scheme for comparing these capabilities of a language model with those of a human. Applying this scheme to examine various models in a navigation instruction generation problem, we find that their pragmatic capability is severely lacking. This insight leads us to augment them with better models of the listener and obtain a significant boost of 11% in success rate in guiding real humans. Our work advocates for having a principled procedure for aligning language models with humans that involves (i) formulating task-oriented capabilities, (ii) devising a method to quantify their deficiency, and (iii) iteratively improving them.

pdf bib
Hallucination Detection for Grounded Instruction Generation
Lingjun Zhao | Khanh Nguyen | Hal Daumé III
Findings of the Association for Computational Linguistics: EMNLP 2023

We investigate the problem of generating instructions to guide humans to navigate in simulated residential environments. A major issue with current models is hallucination: they generate references to actions or objects that are inconsistent with what a human follower would perform or encounter along the described path. We develop a model that detects these hallucinated references by adopting a model pre-trained on a large corpus of image-text pairs, and fine-tuning it with a contrastive loss that separates correct instructions from instructions containing synthesized hallucinations. Our final model outperforms several baselines, including using word probability estimated by the instruction-generation model, and supervised models based on LSTM and Transformer.

2019

pdf bib
Help, Anna! Visual Navigation with Natural Multimodal Assistance via Retrospective Curiosity-Encouraging Imitation Learning
Khanh Nguyen | Hal Daumé III
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Mobile agents that can leverage help from humans can potentially accomplish more complex tasks than they could entirely on their own. We develop “Help, Anna!” (HANNA), an interactive photo-realistic simulator in which an agent fulfills object-finding tasks by requesting and interpreting natural language-and-vision assistance. An agent solving tasks in a HANNA environment can leverage simulated human assistants, called ANNA (Automatic Natural Navigation Assistants), which, upon request, provide natural language and visual instructions to direct the agent towards the goals. To address the HANNA problem, we develop a memory-augmented neural agent that hierarchically models multiple levels of decision-making, and an imitation learning algorithm that teaches the agent to avoid repeating past mistakes while simultaneously predicting its own chances of making future progress. Empirically, our approach is able to ask for help more effectively than competitive baselines and, thus, attains higher task success rate on both previously seen and previously unseen environments.

pdf bib
Global Voices: Crossing Borders in Automatic News Summarization
Khanh Nguyen | Hal Daumé III
Proceedings of the 2nd Workshop on New Frontiers in Summarization

We construct Global Voices, a multilingual dataset for evaluating cross-lingual summarization methods. We extract social-network descriptions of Global Voices news articles to cheaply collect evaluation data for into-English and from-English summarization in 15 languages. Especially, for the into-English summarization task, we crowd-source a high-quality evaluation dataset based on guidelines that emphasize accuracy, coverage, and understandability. To ensure the quality of this dataset, we collect human ratings to filter out bad summaries, and conduct a survey on humans, which shows that the remaining summaries are preferred over the social-network summaries. We study the effect of translation quality in cross-lingual summarization, comparing a translate-then-summarize approach with several baselines. Our results highlight the limitations of the ROUGE metric that are overlooked in monolingual summarization.

2017

pdf bib
Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback
Khanh Nguyen | Hal Daumé III | Jordan Boyd-Graber
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing

Machine translation is a natural candidate problem for reinforcement learning from human feedback: users provide quick, dirty ratings on candidate translations to guide a system to improve. Yet, current neural machine translation training focuses on expensive human-generated reference translations. We describe a reinforcement learning algorithm that improves neural machine translation systems from simulated human feedback. Our algorithm combines the advantage actor-critic algorithm (Mnih et al., 2016) with the attention-based neural encoder-decoder architecture (Luong et al., 2015). This algorithm (a) is well-designed for problems with a large action space and delayed rewards, (b) effectively optimizes traditional corpus-level machine translation metrics, and (c) is robust to skewed, high-variance, granular feedback modeled after actual human behaviors.

pdf bib
The UMD Neural Machine Translation Systems at WMT17 Bandit Learning Task
Amr Sharaf | Shi Feng | Khanh Nguyen | Kianté Brantley | Hal Daumé III
Proceedings of the Second Conference on Machine Translation

2015

pdf bib
Posterior calibration and exploratory analysis for natural language processing models
Khanh Nguyen | Brendan O’Connor
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing