In recent years, large pre-trained language models (PLMs) have achieved remarkable performance on many natural language processing benchmarks. Despite their success, prior studies have shown that PLMs are vulnerable to attacks from adversarial examples. In this work, we focus on the named entity recognition task and study context-aware adversarial attack methods to examine the model’s robustness. Specifically, we propose perturbing the most informative words for recognizing entities to create adversarial examples and investigate different candidate replacement methods to generate natural and plausible adversarial examples. Experiments and analyses show that our methods are more effective in deceiving the model into making wrong predictions than strong baselines.
Content moderators play a key role in keeping the conversation on social media healthy. While the high volume of content they need to judge represents a bottleneck to the moderation pipeline, no studies have explored how models could support them to make faster decisions. There is, by now, a vast body of research into detecting hate speech, sometimes explicitly motivated by a desire to help improve content moderation, but published research using real content moderators is scarce. In this work we investigate the effect of explanations on the speed of real-world moderators. Our experiments show that while generic explanations do not affect their speed and are often ignored, structured explanations lower moderators’ decision making time by 7.4%.
Intimacy is an important social aspect of language. Computational modeling of intimacy in language could help many downstream applications like dialogue systems and offensiveness detection. Despite its importance, resources and approaches on modeling textual intimacy remain rare. To address this gap, we introduce MINT, a new Multilingual intimacy analysis dataset covering 13,372 tweets in 10 languages including English, French, Spanish, Italian, Portuguese, Korean, Dutch, Chinese, Hindi, and Arabic along with SemEval 2023 Task 9: Multilingual Tweet Intimacy Analysis. Our task attracted 45 participants from around the world. While the participants are able to achieve overall good performance on languages in the training set, zero-shot prediction of intimacy in unseen languages remains challenging. Here we provide an overview of the task, summaries of the common approaches, and potential future directions on modeling intimacy across languages. All the relevant resources are available at https: //sites.google.com/umich.edu/ semeval-2023-tweet-intimacy.
Despite its relevance, the maturity of NLP for social media pales in comparison with general-purpose models, metrics and benchmarks. This fragmented landscape makes it hard for the community to know, for instance, given a task, which is the best performing model and how it compares with others. To alleviate this issue, we introduce a unified benchmark for NLP evaluation in social media, SuperTweetEval, which includes a heterogeneous set of tasks and datasets combined, adapted and constructed from scratch. We benchmarked the performance of a wide range of models on SuperTweetEval and our results suggest that, despite the recent advances in language modelling, social media remains challenging.
Despite its importance, the time variable has been largely neglected in the NLP and language model literature. In this paper, we present TimeLMs, a set of language models specialized on diachronic Twitter data. We show that a continual learning strategy contributes to enhancing Twitter-based language models’ capacity to deal with future and out-of-distribution tweets, while making them competitive with standardized and more monolithic benchmarks. We also perform a number of qualitative analyses showing how they cope with trends and peaks in activity involving specific named entities or concept drift. TimeLMs is available at github.com/cardiffnlp/timelms.
In this work, we take the named entity recognition task in the English language as a case study and explore style transfer as a data augmentation method to increase the size and diversity of training data in low-resource scenarios. We propose a new method to effectively transform the text from a high-resource domain to a low-resource domain by changing its style-related attributes to generate synthetic data for training. Moreover, we design a constrained decoding algorithm along with a set of key ingredients for data selection to guarantee the generation of valid and coherent data. Experiments and analysis on five different domain pairs under different data regimes demonstrate that our approach can significantly improve results compared to current state-of-the-art data augmentation methods. Our approach is a practical solution to data scarcity, and we expect it to be applicable to other NLP tasks.
Recent progress in language model pre-training has led to important improvements in Named Entity Recognition (NER). Nonetheless, this progress has been mainly tested in well-formatted documents such as news, Wikipedia, or scientific articles. In social media the landscape is different, in which it adds another layer of complexity due to its noisy and dynamic nature. In this paper, we focus on NER in Twitter, one of the largest social media platforms, and construct a new NER dataset, TweetNER7, which contains seven entity types annotated over 11,382 tweets from September 2019 to August 2021. The dataset was constructed by carefully distributing the tweets over time and taking representative trends as a basis. Along with the dataset, we provide a set of language model baselines and perform an analysis on the language model performance on the task, especially analyzing the impact of different time periods. In particular, we focus on three important temporal aspects in our analysis: short-term degradation of NER models over time, strategies to fine-tune a language model over different periods, and self-labeling as an alternative to lack of recently-labeled data. TweetNER7 is released publicly (https://huggingface.co/datasets/tner/tweetner7) along with the models fine-tuned on it (NER models have been integrated into TweetNLP and can be found at https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper).
Language evolves over time, and word meaning changes accordingly. This is especially true in social media, since its dynamic nature leads to faster semantic shifts, making it challenging for NLP models to deal with new content and trends. However, the number of datasets and models that specifically address the dynamic nature of these social platforms is scarce. To bridge this gap, we present TempoWiC, a new benchmark especially aimed at accelerating research in social media-based meaning shift. Our results show that TempoWiC is a challenging benchmark, even for recently-released language models specialized in social media.
Social media platforms host discussions about a wide variety of topics that arise everyday. Making sense of all the content and organising it into categories is an arduous task. A common way to deal with this issue is relying on topic modeling, but topics discovered using this technique are difficult to interpret and can differ from corpus to corpus. In this paper, we present a new task based on tweet topic classification and release two associated datasets. Given a wide range of topics covering the most important discussion points in social media, we provide training and testing data from recent time periods that can be used to evaluate tweet classification models. Moreover, we perform a quantitative evaluation and analysis of current general- and domain-specific language models on the task, which provide more insights on the challenges and nature of the task.
Multimodal named entity recognition (MNER) requires to bridge the gap between language understanding and visual context. While many multimodal neural techniques have been proposed to incorporate images into the MNER task, the model’s ability to leverage multimodal interactions remains poorly understood. In this work, we conduct in-depth analyses of existing multimodal fusion techniques from different perspectives and describe the scenarios where adding information from the image does not always boost performance. We also study the use of captions as a way to enrich the context for MNER. Experiments on three datasets from popular social platforms expose the bottleneck of existing multimodal models and the situations where using captions is beneficial.
Fine-tuned language models have been shown to exhibit biases against protected groups in a host of modeling tasks such as text classification and coreference resolution. Previous works focus on detecting these biases, reducing bias in data representations, and using auxiliary training objectives to mitigate bias during fine-tuning. Although these techniques achieve bias reduction for the task and domain at hand, the effects of bias mitigation may not directly transfer to new tasks, requiring additional data collection and customized annotation of sensitive attributes, and re-evaluation of appropriate fairness metrics. We explore the feasibility and benefits of upstream bias mitigation (UBM) for reducing bias on downstream tasks, by first applying bias mitigation to an upstream model through fine-tuning and subsequently using it for downstream fine-tuning. We find, in extensive experiments across hate speech detection, toxicity detection and coreference resolution tasks over various bias factors, that the effects of UBM are indeed transferable to new downstream tasks or domains via fine-tuning, creating less biased downstream models than directly fine-tuning on the downstream task or transferring from a vanilla upstream model. Though challenges remain, we show that UBM promises more efficient and accessible bias mitigation in LM fine-tuning.
Current work in named entity recognition (NER) shows that data augmentation techniques can produce more robust models. However, most existing techniques focus on augmenting in-domain data in low-resource scenarios where annotated data is quite limited. In this work, we take this research direction to the opposite and study cross-domain data augmentation for the NER task. We investigate the possibility of leveraging data from high-resource domains by projecting it into the low-resource domains. Specifically, we propose a novel neural architecture to transform the data representation from a high-resource to a low-resource domain by learning the patterns (e.g. style, noise, abbreviations, etc.) in the text that differentiate them and a shared feature space where both domains are aligned. We experiment with diverse datasets and show that transforming the data to the low-resource domain representation achieves significant improvements over only using data from high-resource domains.
Performance of neural models for named entity recognition degrades over time, becoming stale. This degradation is due to temporal drift, the change in our target variables’ statistical properties over time. This issue is especially problematic for social media data, where topics change rapidly. In order to mitigate the problem, data annotation and retraining of models is common. Despite its usefulness, this process is expensive and time-consuming, which motivates new research on efficient model updating. In this paper, we propose an intuitive approach to measure the potential trendiness of tweets and use this metric to select the most informative instances to use for training. We conduct experiments on three state-of-the-art models on the Temporal Twitter Dataset. Our approach shows larger increases in prediction accuracy with less training data than the alternatives, making it an attractive, practical solution.
Contextual embeddings derived from transformer-based neural language models have shown state-of-the-art performance for various tasks such as question answering, sentiment analysis, and textual similarity in recent years. Extensive work shows how accurately such models can represent abstract, semantic information present in text. In this expository work, we explore a tangent direction and analyze such models’ performance on tasks that require a more granular level of representation. We focus on the problem of textual similarity from two perspectives: matching documents on a granular level (requiring embeddings to capture fine-grained attributes in the text), and an abstract level (requiring embeddings to capture overall textual semantics). We empirically demonstrate, across two datasets from different domains, that despite high performance in abstract document matching as expected, contextual embeddings are consistently (and at times, vastly) outperformed by simple baselines like TF-IDF for more granular tasks. We then propose a simple but effective method to incorporate TF-IDF into models that use contextual embeddings, achieving relative improvements of up to 36% on granular tasks.
Successfully training a deep neural network demands a huge corpus of labeled data. However, each label only provides limited information to learn from, and collecting the requisite number of labels involves massive human effort. In this work, we introduce LEAN-LIFE, a web-based, Label-Efficient AnnotatioN framework for sequence labeling and classification tasks, with an easy-to-use UI that not only allows an annotator to provide the needed labels for a task but also enables LearnIng From Explanations for each labeling decision. Such explanations enable us to generate useful additional labeled data from unlabeled instances, bolstering the pool of available training data. On three popular NLP tasks (named entity recognition, relation extraction, sentiment analysis), we find that using this enhanced supervision allows our models to surpass competitive baseline F1 scores by more than 5-10 percentage points, while using 2X times fewer labeled instances. Our framework is the first to utilize this enhanced supervision technique and does so for three important tasks – thus providing improved annotation recommendations to users and an ability to build datasets of (data, label, explanation) triples instead of the regular (data, label) pair.
The experimental landscape in natural language processing for social media is too fragmented. Each year, new shared tasks and datasets are proposed, ranging from classics like sentiment analysis to irony detection or emoji prediction. Therefore, it is unclear what the current state of the art is, as there is no standardized evaluation protocol, neither a strong set of baselines trained on such domain-specific data. In this paper, we propose a new evaluation framework (TweetEval) consisting of seven heterogeneous Twitter-specific classification tasks. We also provide a strong set of baselines as starting point, and compare different language modeling pre-training strategies. Our initial experiments show the effectiveness of starting off with existing pre-trained generic language models, and continue training them on Twitter corpora.
Tracking user reported bugs requires considerable engineering effort in going through many repetitive reports and assigning them to the correct teams. This paper proposes a neural architecture that can jointly (1) detect if two bug reports are duplicates, and (2) aggregate them into latent topics. Leveraging the assumption that learning the topic of a bug is a sub-task for detecting duplicates, we design a loss function that can jointly perform both tasks but needs supervision for only duplicate classification, achieving topic clustering in an unsupervised fashion. We use a two-step attention module that uses self-attention for topic clustering and conditional attention for duplicate detection. We study the characteristics of two types of real world datasets that have been marked for duplicate bugs by engineers and by non-technical annotators. The results demonstrate that our model not only can outperform state-of-the-art methods for duplicate classification on both cases, but can also learn meaningful latent clusters without additional supervision.
We introduce a new task called Multimodal Named Entity Recognition (MNER) for noisy user-generated data such as tweets or Snapchat captions, which comprise short text with accompanying images. These social media posts often come in inconsistent or incomplete syntax and lexical notations with very limited surrounding textual contexts, bringing significant challenges for NER. To this end, we create a new dataset for MNER called SnapCaptions (Snapchat image-caption pairs submitted to public and crowd-sourced stories with fully annotated named entities). We then build upon the state-of-the-art Bi-LSTM word/character based NER models with 1) a deep image network which incorporates relevant visual context to augment textual information, and 2) a generic modality-attention module which learns to attenuate irrelevant modalities while amplifying the most informative ones to extract contexts from, adaptive to each sample and token. The proposed MNER model with modality attention significantly outperforms the state-of-the-art text-only NER models by successfully leveraging provided visual contexts, opening up potential applications of MNER on myriads of social media platforms.
Everyday billions of multimodal posts containing both images and text are shared in social media sites such as Snapchat, Twitter or Instagram. This combination of image and text in a single message allows for more creative and expressive forms of communication, and has become increasingly common in such sites. This new paradigm brings new challenges for natural language understanding, as the textual component tends to be shorter, more informal, and often is only understood if combined with the visual context. In this paper, we explore the task of name tagging in multimodal social media posts. We start by creating two new multimodal datasets: the first based on Twitter posts and the second based on Snapchat captions (exclusively submitted to public and crowd-sourced stories). We then propose a novel model architecture based on Visual Attention that not only provides deeper visual understanding on the decisions of the model, but also significantly outperforms other state-of-the-art baseline methods for this task.
We introduce the new Multimodal Named Entity Disambiguation (MNED) task for multimodal social media posts such as Snapchat or Instagram captions, which are composed of short captions with accompanying images. Social media posts bring significant challenges for disambiguation tasks because 1) ambiguity not only comes from polysemous entities, but also from inconsistent or incomplete notations, 2) very limited context is provided with surrounding words, and 3) there are many emerging entities often unseen during training. To this end, we build a new dataset called SnapCaptionsKB, a collection of Snapchat image captions submitted to public and crowd-sourced stories, with named entity mentions fully annotated and linked to entities in an external knowledge base. We then build a deep zeroshot multimodal network for MNED that 1) extracts contexts from both text and image, and 2) predicts correct entity in the knowledge graph embeddings space, allowing for zeroshot disambiguation of entities unseen in training set as well. The proposed model significantly outperforms the state-of-the-art text-only NED models, showing efficacy and potentials of the MNED task.