Liang Lin


2024

pdf bib
Mitigating Matthew Effect: Multi-Hypergraph Boosted Multi-Interest Self-Supervised Learning for Conversational Recommendation
Yongsen Zheng | Ruilin Xu | Guohua Wang | Liang Lin | Kwok-Yan Lam
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The Matthew effect is a big challenge in Recommender Systems (RSs), where popular items tend to receive increasing attention, while less popular ones are often overlooked, perpetuating existing disparities. Although many existing methods attempt to mitigate Matthew effect in the static or quasi-static recommendation scenarios, such issue will be more pronounced as users engage with the system over time. To this end, we propose a novel framework, Multi-Hypergraph Boosted Multi-Interest Self-Supervised Learning for Conversational Recommendation (HiCore), aiming to address Matthew effect in the Conversational Recommender System (CRS) involving the dynamic user-system feedback loop. It devotes to learn multi-level user interests by building a set of hypergraphs (i.e., item-, entity-, word-oriented multiple-channel hypergraphs) to alleviate the Matthew effec. Extensive experiments on four CRS-based datasets showcase that HiCore attains a new state-of-the-art performance, underscoring its superiority in mitigating the Matthew effect effectively. Our code is available at https://github.com/zysensmile/HiCore.

pdf bib
HyCoRec: Hypergraph-Enhanced Multi-Preference Learning for Alleviating Matthew Effect in Conversational Recommendation
Yongsen Zheng | Ruilin Xu | Ziliang Chen | Guohua Wang | Mingjie Qian | Jinghui Qin | Liang Lin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

The Matthew effect is a notorious issue in Recommender Systems (RSs), i.e., the rich get richer and the poor get poorer, wherein popular items are overexposed while less popular ones are regularly ignored. Most methods examine Matthew effect in static or nearly-static recommendation scenarios. However, the Matthew effect will be increasingly amplified when the user interacts with the system over time. To address these issues, we propose a novel paradigm, Hypergraph-Enhanced Multi-Preference Learning for Alleviating Matthew Effect in Conversational Recommendation (HyCoRec), which aims to alleviate the Matthew effect in conversational recommendation. Concretely, HyCoRec devotes to alleviate the Matthew effect by learning multi-aspect preferences, i.e., item-, entity-, word-, review-, and knowledge-aspect preferences, to effectively generate responses in the conversational task and accurately predict items in the recommendation task when the user chats with the system over time. Extensive experiments conducted on two benchmarks validate that HyCoRec achieves new state-of-the-art performance and the superior of alleviating Matthew effect.

pdf bib
VisDiaHalBench: A Visual Dialogue Benchmark For Diagnosing Hallucination in Large Vision-Language Models
Qingxing Cao | Junhao Cheng | Xiaodan Liang | Liang Lin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite the significant success of large vision-language models (LVLMs), some studies have revealed that LVLMs suffer from the hallucination problem, where the LVLMs’ response contains descriptions of non-existent objects. Although various benchmarks have been proposed to investigate this problem, they mostly focus on single-turn evaluation and overlook the hallucination raised by textual inputs. To investigate the hallucination problem of LVLMs when given long-term misleading textual history, we propose a novel visual dialogue hallucination evaluation benchmark VisDiaHalBench. The benchmark consists of samples with five-turn questions about an edited image and its original version. VisDiaHalBench differs from previous hallucination benchmarks in the following three points: 1) The questions and answers are unambiguously grounded by annotated scene graphs. 2) The images are uncommonly edited to inspect the visual model and common-object hallucination in LLMs. 3) The carefully designed dialogue refers a same object in different turns to assess the image consistency and influence of history for LVLMs. The detailed analysis of several state-of-the-art LVLMs across image consistency, visual understanding, history influence, and other dimensions reveals their substantial performance gap with single-turn VQA tasks. The benchmark is released in: https://github.com/qingxingcao/VisDiaHalBench

2023

pdf bib
HutCRS: Hierarchical User-Interest Tracking for Conversational Recommender System
Mingjie Qian | Yongsen Zheng | Jinghui Qin | Liang Lin
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Conversational Recommender System (CRS) aims to explicitly acquire user preferences towards items and attributes through natural language conversations. However, existing CRS methods ask users to provide explicit answers (yes/no) for each attribute they require, regardless of users’ knowledge or interest, which may significantly reduce the user experience and semantic consistency. Furthermore, these methods assume that users like all attributes of the target item and dislike those unrelated to it, which can introduce bias in attribute-level feedback and impede the system’s ability to accurately identify the target item. To address these issues, we propose a more realistic, user-friendly, and explainable CRS framework called Hierarchical User-Interest Tracking for Conversational Recommender System (HutCRS). HutCRS portrays the conversation as a hierarchical interest tree that consists of two stages. In stage I, the system identifies the aspects that the user prefers while the system asks about attributes related to these positive aspects or recommends items in stage II. In addition, we develop a Hierarchical-Interest Policy Learning (HIPL) module to integrate the decision-making process of which aspects to ask and when to ask about attributes or recommend items. Moreover, we classify the attribute-level feedback results to further enhance the system’s ability to capture special information, such as attribute instances that are accepted by users but not presented in their historical interactive data. Extensive experiments on four benchmark datasets demonstrate the superiority of our method. The implementation of HutCRS is publicly available at https://github.com/xinle1129/HutCRS.

2022

pdf bib
UniGeo: Unifying Geometry Logical Reasoning via Reformulating Mathematical Expression
Jiaqi Chen | Tong Li | Jinghui Qin | Pan Lu | Liang Lin | Chongyu Chen | Xiaodan Liang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Geometry problem solving is a well-recognized testbed for evaluating the high-level multi-modal reasoning capability of deep models. In most existing works, two main geometry problems: calculation and proving, are usually treated as two specific tasks, hindering a deep model to unify its reasoning capability on multiple math tasks. However, in essence, these two tasks have similar problem representations and overlapped math knowledge which can improve the understanding and reasoning ability of a deep model on both two tasks. Therefore, we construct a large-scale Unified Geometry problem benchmark, UniGeo, which contains 4,998 calculation problems and 9,543 proving problems. Each proving problem is annotated with a multi-step proof with reasons and mathematical expressions. The proof can be easily reformulated as a proving sequence that shares the same formats with the annotated program sequence for calculation problems. Naturally, we also present a unified multi-task Geometric Transformer framework, Geoformer, to tackle calculation and proving problems simultaneously in the form of sequence generation, which finally shows the reasoning ability can be improved on both two tasks by unifying formulation. Furthermore, we propose a Mathematical Expression Pretraining (MEP) method that aims to predict the mathematical expressions in the problem solution, thus improving the Geoformer model. Experiments on the UniGeo demonstrate that our proposed Geoformer obtains state-of-the-art performance by outperforming task-specific model NGS with over 5.6% and 3.2% accuracies on calculation and proving problems, respectively.

pdf bib
LogicSolver: Towards Interpretable Math Word Problem Solving with Logical Prompt-enhanced Learning
Zhicheng Yang | Jinghui Qin | Jiaqi Chen | Liang Lin | Xiaodan Liang
Findings of the Association for Computational Linguistics: EMNLP 2022

Recently, deep learning models have made great progress in MWP solving on answer accuracy. However, they are uninterpretable since they mainly rely on shallow heuristics to achieve high performance without understanding and reasoning the grounded math logic. To address this issue and make a step towards interpretable MWP solving, we first construct a high-quality MWP dataset named InterMWP which consists of 11,495 MWPs and annotates interpretable logical formulas based on algebraic knowledge as the grounded linguistic logic of each solution equation. Different from existing MWP datasets, our InterMWP benchmark asks for a solver to not only output the solution expressions but also predict the corresponding logical formulas. We further propose a novel approach with logical prompt and interpretation generation, called LogicSolver. For each MWP, our LogicSolver first retrieves some highly-correlated algebraic knowledge and then passes them to the backbone model as prompts to improve the semantic representations of MWPs. With these improved semantic representations, our LogicSolver generates corresponding solution expressions and interpretable knowledge formulas in accord with the generated solution expressions, simultaneously. Experimental results show that our LogicSolver has stronger logical formula-based interpretability than baselines while achieving higher answer accuracy with the help of logical prompts, simultaneously. The source code and dataset will be available at https://github.com/yangzhch6/InterMWP.

2021

pdf bib
Towards Quantifiable Dialogue Coherence Evaluation
Zheng Ye | Liucun Lu | Lishan Huang | Liang Lin | Xiaodan Liang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Automatic dialogue coherence evaluation has attracted increasing attention and is crucial for developing promising dialogue systems. However, existing metrics have two major limitations: (a) they are mostly trained in a simplified two-level setting (coherent vs. incoherent), while humans give Likert-type multi-level coherence scores, dubbed as “quantifiable”; (b) their predicted coherence scores cannot align with the actual human rating standards due to the absence of human guidance during training. To address these limitations, we propose Quantifiable Dialogue Coherence Evaluation (QuantiDCE), a novel framework aiming to train a quantifiable dialogue coherence metric that can reflect the actual human rating standards. Specifically, QuantiDCE includes two training stages, Multi-Level Ranking (MLR) pre-training and Knowledge Distillation (KD) fine-tuning. During MLR pre-training, a new MLR loss is proposed for enabling the model to learn the coarse judgement of coherence degrees. Then, during KD fine-tuning, the pretrained model is further finetuned to learn the actual human rating standards with only very few human-annotated data. To advocate the generalizability even with limited fine-tuning data, a novel KD regularization is introduced to retain the knowledge learned at the pre-training stage. Experimental results show that the model trained by QuantiDCE presents stronger correlations with human judgements than the other state-of-the-art metrics.

pdf bib
Neural-Symbolic Solver for Math Word Problems with Auxiliary Tasks
Jinghui Qin | Xiaodan Liang | Yining Hong | Jianheng Tang | Liang Lin
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Previous math word problem solvers following the encoder-decoder paradigm fail to explicitly incorporate essential math symbolic constraints, leading to unexplainable and unreasonable predictions. Herein, we propose Neural-Symbolic Solver (NS-Solver) to explicitly and seamlessly incorporate different levels of symbolic constraints by auxiliary tasks. Our NS-Solver consists of a problem reader to encode problems, a programmer to generate symbolic equations, and a symbolic executor to obtain answers. Along with target expression supervision, our solver is also optimized via 4 new auxiliary objectives to enforce different symbolic reasoning: a) self-supervised number prediction task predicting both number quantity and number locations; b) commonsense constant prediction task predicting what prior knowledge (e.g. how many legs a chicken has) is required; c) program consistency checker computing the semantic loss between predicted equation and target equation to ensure reasonable equation mapping; d) duality exploiting task exploiting the quasi-duality between symbolic equation generation and problem’s part-of-speech generation to enhance the understanding ability of a solver. Besides, to provide a more realistic and challenging benchmark for developing a universal and scalable solver, we also construct a new largescale MWP benchmark CM17K consisting of 4 kinds of MWPs (arithmetic, one-unknown linear, one-unknown non-linear, equation set) with more than 17K samples. Extensive experiments on Math23K and our CM17k demonstrate the superiority of our NS-Solver compared to state-of-the-art methods.

pdf bib
GeoQA: A Geometric Question Answering Benchmark Towards Multimodal Numerical Reasoning
Jiaqi Chen | Jianheng Tang | Jinghui Qin | Xiaodan Liang | Lingbo Liu | Eric Xing | Liang Lin
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
Wav-BERT: Cooperative Acoustic and Linguistic Representation Learning for Low-Resource Speech Recognition
Guolin Zheng | Yubei Xiao | Ke Gong | Pan Zhou | Xiaodan Liang | Liang Lin
Findings of the Association for Computational Linguistics: EMNLP 2021

Unifying acoustic and linguistic representation learning has become increasingly crucial to transfer the knowledge learned on the abundance of high-resource language data for low-resource speech recognition. Existing approaches simply cascade pre-trained acoustic and language models to learn the transfer from speech to text. However, how to solve the representation discrepancy of speech and text is unexplored, which hinders the utilization of acoustic and linguistic information. Moreover, previous works simply replace the embedding layer of the pre-trained language model with the acoustic features, which may cause the catastrophic forgetting problem. In this work, we introduce Wav-BERT, a cooperative acoustic and linguistic representation learning method to fuse and utilize the contextual information of speech and text. Specifically, we unify a pre-trained acoustic model (wav2vec 2.0) and a language model (BERT) into an end-to-end trainable framework. A Representation Aggregation Module is designed to aggregate acoustic and linguistic representation, and an Embedding Attention Module is introduced to incorporate acoustic information into BERT, which can effectively facilitate the cooperation of two pre-trained models and thus boost the representation learning. Extensive experiments show that our Wav-BERT significantly outperforms the existing approaches and achieves state-of-the-art performance on low-resource speech recognition.

2020

pdf bib
Semantically-Aligned Universal Tree-Structured Solver for Math Word Problems
Jinghui Qin | Lihui Lin | Xiaodan Liang | Rumin Zhang | Liang Lin
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

A practical automatic textual math word problems (MWPs) solver should be able to solve various textual MWPs while most existing works only focused on one-unknown linear MWPs. Herein, we propose a simple but efficient method called Universal Expression Tree (UET) to make the first attempt to represent the equations of various MWPs uniformly. Then a semantically-aligned universal tree-structured solver (SAU-Solver) based on an encoder-decoder framework is proposed to resolve multiple types of MWPs in a unified model, benefiting from our UET representation. Our SAU-Solver generates a universal expression tree explicitly by deciding which symbol to generate according to the generated symbols’ semantic meanings like human solving MWPs. Besides, our SAU-Solver also includes a novel subtree-level semanticallyaligned regularization to further enforce the semantic constraints and rationality of the generated expression tree by aligning with the contextual information. Finally, to validate the universality of our solver and extend the research boundary of MWPs, we introduce a new challenging Hybrid Math Word Problems dataset (HMWP), consisting of three types of MWPs. Experimental results on several MWPs datasets show that our model can solve universal types of MWPs and outperforms several state-of-the-art models.

pdf bib
GRADE: Automatic Graph-Enhanced Coherence Metric for Evaluating Open-Domain Dialogue Systems
Lishan Huang | Zheng Ye | Jinghui Qin | Liang Lin | Xiaodan Liang
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Automatically evaluating dialogue coherence is a challenging but high-demand ability for developing high-quality open-domain dialogue systems. However, current evaluation metrics consider only surface features or utterance-level semantics, without explicitly considering the fine-grained topic transition dynamics of dialogue flows. Here, we first consider that the graph structure constituted with topics in a dialogue can accurately depict the underlying communication logic, which is a more natural way to produce persuasive metrics. Capitalized on the topic-level dialogue graph, we propose a new evaluation metric GRADE, which stands for Graph-enhanced Representations for Automatic Dialogue Evaluation. Specifically, GRADE incorporates both coarse-grained utterance-level contextualized representations and fine-grained topic-level graph representations to evaluate dialogue coherence. The graph representations are obtained by reasoning over topic-level dialogue graphs enhanced with the evidence from a commonsense graph, including k-hop neighboring representations and hop-attention weights. Experimental results show that our GRADE significantly outperforms other state-of-the-art metrics on measuring diverse dialogue models in terms of the Pearson and Spearman correlations with human judgments. Besides, we release a new large-scale human evaluation benchmark to facilitate future research on automatic metrics.