Lina Yao
2024
Speaking in Wavelet Domain: A Simple and Efficient Approach to Speed up Speech Diffusion Model
Xiangyu Zhang
|
Daijiao Liu
|
Hexin Liu
|
Qiquan Zhang
|
Hanyu Meng
|
Leibny Paola Garcia Perera
|
EngSiong Chng
|
Lina Yao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Recently, Denoising Diffusion Probabilistic Models (DDPMs) have attained leading performances across a diverse range of generative tasks. However, in the field of speech synthesis, although DDPMs exhibit impressive performance, their prolonged training duration and substantial inference costs hinder practical deployment. Existing approaches primarily focus on enhancing inference speed, while approaches to accelerate training—a key factor in the costs associated with adding or customizing voices—often necessitate complex modifications to the model, compromising their universal applicability. To address the aforementioned challenges, we propose an inquiry: is it possible to enhance the training/inference speed and performance of DDPMs by modifying the speech signal itself? In this paper, we double the training and inference speed of Speech DDPMs by simply redirecting the generative target to the wavelet domain. This method not only achieves comparable or superior performance to the original model in speech synthesis tasks but also demonstrates its versatility. By investigating and utilizing different wavelet bases, our approach proves effective not just in speech synthesis, but also in speech enhancement.
Personalized Federated Learning for Text Classification with Gradient-Free Prompt Tuning
Rui Wang
|
Tong Yu
|
Ruiyi Zhang
|
Sungchul Kim
|
Ryan Rossi
|
Handong Zhao
|
Junda Wu
|
Subrata Mitra
|
Lina Yao
|
Ricardo Henao
Findings of the Association for Computational Linguistics: NAACL 2024
In this paper, we study personalized federated learning for text classification with Pretrained Language Models (PLMs). We identify two challenges in efficiently leveraging PLMs for personalized federated learning: 1) Communication. PLMs are usually large in size, e.g., with hundreds of millions of parameters, inducing huge communication cost in a federated setting. 2) Local Training. Training with PLMs generally requires back-propagation, during which memory consumption can be several times that of the forward-propagation. This may not be affordable when the PLMs are trained locally on the clients that are resource constrained, e.g., mobile devices with limited access to memory resources. Additionally, the proprietary PLMs can be provided as concealed APIs, for which the back-propagation operations may not be available. In solving these, we propose a training framework that includes an approach of discrete local search for gradient-free local training, along with a compression mechanism inspired from the linear word analogy that allows communicating with discretely indexed tokens, thus significantly reducing the communication cost. Experiments show that our gradient-free framework achieves superior performance compared with baselines.
Search
Co-authors
- Daijiao Liu 1
- EngSiong Chng 1
- Handong Zhao 1
- Hanyu Meng 1
- Hexin Liu 1
- show all...