Lindia Tjuatja


2024

pdf bib
Wav2Gloss: Generating Interlinear Glossed Text from Speech
Taiqi He | Kwanghee Choi | Lindia Tjuatja | Nathaniel Robinson | Jiatong Shi | Shinji Watanabe | Graham Neubig | David Mortensen | Lori Levin
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Thousands of the world’s languages are in danger of extinction—a tremendous threat to cultural identities and human language diversity. Interlinear Glossed Text (IGT) is a form of linguistic annotation that can support documentation and resource creation for these languages’ communities. IGT typically consists of (1) transcriptions, (2) morphological segmentation, (3) glosses, and (4) free translations to a majority language. We propose Wav2Gloss: a task in which these four annotation components are extracted automatically from speech, and introduce the first dataset to this end, Fieldwork: a corpus of speech with all these annotations, derived from the work of field linguists, covering 37 languages, with standard formatting, and train/dev/test splits. We provide various baselines to lay the groundwork for future research on IGT generation from speech, such as end-to-end versus cascaded, monolingual versus multilingual, and single-task versus multi-task approaches.

pdf bib
GlossLM: A Massively Multilingual Corpus and Pretrained Model for Interlinear Glossed Text
Michael Ginn | Lindia Tjuatja | Taiqi He | Enora Rice | Graham Neubig | Alexis Palmer | Lori Levin
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Language documentation projects often involve the creation of annotated text in a format such as interlinear glossed text (IGT), which captures fine-grained morphosyntactic analyses in a morpheme-by-morpheme format. However, there are few existing resources providing large amounts of standardized, easily accessible IGT data, limiting their applicability to linguistic research, and making it difficult to use such data in NLP modeling. We compile the largest existing corpus of IGT data from a variety of sources, covering over 450k examples across 1.8k languages, to enable research on crosslingual transfer and IGT generation. We normalize much of our data to follow a standard set of labels across languages.Furthermore, we explore the task of automatically generating IGT in order to aid documentation projects. As many languages lack sufficient monolingual data, we pretrain a large multilingual model on our corpus. We demonstrate the utility of this model by finetuning it on monolingual corpora, outperforming SOTA models by up to 6.6%. Our pretrained model and dataset are available on Hugging Face: https://huggingface.co/collections/lecslab/glosslm-66da150854209e910113dd87

pdf bib
Do LLMs Exhibit Human-like Response Biases? A Case Study in Survey Design
Lindia Tjuatja | Valerie Chen | Tongshuang Wu | Ameet Talwalkwar | Graham Neubig
Transactions of the Association for Computational Linguistics, Volume 12

One widely cited barrier to the adoption of LLMs as proxies for humans in subjective tasks is their sensitivity to prompt wording—but interestingly, humans also display sensitivities to instruction changes in the form of response biases. We investigate the extent to which LLMs reflect human response biases, if at all. We look to survey design, where human response biases caused by changes in the wordings of “prompts” have been extensively explored in social psychology literature. Drawing from these works, we design a dataset and framework to evaluate whether LLMs exhibit human-like response biases in survey questionnaires. Our comprehensive evaluation of nine models shows that popular open and commercial LLMs generally fail to reflect human-like behavior, particularly in models that have undergone RLHF. Furthermore, even if a model shows a significant change in the same direction as humans, we find that they are sensitive to perturbations that do not elicit significant changes in humans. These results highlight the pitfalls of using LLMs as human proxies, and underscore the need for finer-grained characterizations of model behavior.1

2023

pdf bib
Generalized Glossing Guidelines: An Explicit, Human- and Machine-Readable, Item-and-Process Convention for Morphological Annotation
David R. Mortensen | Ela Gulsen | Taiqi He | Nathaniel Robinson | Jonathan Amith | Lindia Tjuatja | Lori Levin
Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology

Interlinear glossing provides a vital type of morphosyntactic annotation, both for linguists and language revitalists, and numerous conventions exist for representing it formally and computationally. Some of these formats are human readable; others are machine readable. Some are easy to edit with general-purpose tools. Few represent non-concatentative processes like infixation, reduplication, mutation, truncation, and tonal overwriting in a consistent and formally rigorous way (on par with affixation). We propose an annotation convention—Generalized Glossing Guidelines (GGG) that combines all of these positive properties using an Item-and-Process (IP) framework. We describe the format, demonstrate its linguistic adequacy, and compare it with two other interlinear glossed text annotation schemes.

pdf bib
SigMoreFun Submission to the SIGMORPHON Shared Task on Interlinear Glossing
Taiqi He | Lindia Tjuatja | Nathaniel Robinson | Shinji Watanabe | David R. Mortensen | Graham Neubig | Lori Levin
Proceedings of the 20th SIGMORPHON workshop on Computational Research in Phonetics, Phonology, and Morphology

In our submission to the SIGMORPHON 2023 Shared Task on interlinear glossing (IGT), we explore approaches to data augmentation and modeling across seven low-resource languages. For data augmentation, we explore two approaches: creating artificial data from the provided training data and utilizing existing IGT resources in other languages. On the modeling side, we test an enhanced version of the provided token classification baseline as well as a pretrained multilingual seq2seq model. Additionally, we apply post-correction using a dictionary for Gitksan, the language with the smallest amount of data. We find that our token classification models are the best performing, with the highest word-level accuracy for Arapaho and highest morpheme-level accuracy for Gitksan out of all submissions. We also show that data augmentation is an effective strategy, though applying artificial data pretraining has very different effects across both models tested.

pdf bib
Syntax and Semantics Meet in the “Middle”: Probing the Syntax-Semantics Interface of LMs Through Agentivity
Lindia Tjuatja | Emmy Liu | Lori Levin | Graham Neubig
Proceedings of the 12th Joint Conference on Lexical and Computational Semantics (*SEM 2023)

Recent advances in large language models have prompted researchers to examine their abilities across a variety of linguistic tasks, but little has been done to investigate how models handle the interactions in meaning across words and larger syntactic forms—i.e. phenomena at the intersection of syntax and semantics. We present the semantic notion of agentivity as a case study for probing such interactions. We created a novel evaluation dataset by utilitizing the unique linguistic properties of a subset of optionally transitive English verbs. This dataset was used to prompt varying sizes of three model classes to see if they are sensitive to agentivity at the lexical level, and if they can appropriately employ these word-level priors given a specific syntactic context. Overall, GPT-3 text-davinci-003 performs extremely well across all experiments, outperforming all other models tested by far. In fact, the results are even better correlated with human judgements than both syntactic and semantic corpus statistics. This suggests that LMs may potentially serve as more useful tools for linguistic annotation, theory testing, and discovery than select corpora for certain tasks.