Marzieh Fadaee


2024

pdf bib
LLM See, LLM Do: Leveraging Active Inheritance to Target Non-Differentiable Objectives
Luísa Shimabucoro | Sebastian Ruder | Julia Kreutzer | Marzieh Fadaee | Sara Hooker
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The widespread adoption of synthetic data raises new questions about how models generating the data can influence other large language models (LLMs). To start, our work exhaustively characterizes the impact of passive inheritance of model properties by systematically studying how the source of synthetic data shapes models’ internal biases, calibration and preferences, and their generations’ textual attributes, providing one of the most comprehensive studies to-date. We find that models are surprisingly sensitive towards certain attributes even when the synthetic data prompts appear “neutral” which invites the question: can we explicitly steer the distilled data towards desired properties? We demonstrate how such active inheritance can steer the generation profiles of models towards desirable non-differentiable attributes in both directions, e.g. increasing lexical diversity or reducing toxicity. Overall, our study broadens the understanding of the implicit biases inherited by LLMs and explores how we can leverage them to positive effect.

pdf bib
The Multilingual Alignment Prism: Aligning Global and Local Preferences to Reduce Harm
Aakanksha | Arash Ahmadian | Beyza Ermis | Seraphina Goldfarb-Tarrant | Julia Kreutzer | Marzieh Fadaee | Sara Hooker
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

A key concern with the concept of *“alignment”* is the implicit question of *“alignment to what?”*. AI systems are increasingly used across the world, yet safety alignment is often focused on homogeneous monolingual settings. Additionally, preference training and safety measures often overfit to harms common in Western-centric datasets. Here, we explore the viability of different alignment approaches when balancing dual objectives: addressing and optimizing for a non-homogeneous set of languages and cultural preferences while minimizing both global and local harms. We collect the first human annotated red teaming prompts in different languages, distinguishing between global and local harm, which serve as a laboratory to understand the reliability of alignment techniques when faced with preference distributions that are non-stationary across geographies and languages. While this setting is seldom covered by the literature to date, which primarily centers on English harm mitigation, it captures real-world interactions with AI systems around the world. We establish a new precedent for state-of-the-art alignment techniques across 6 languages with minimal degradation in general performance. Our work provides important insights into cross-lingual transfer and novel optimization approaches to safeguard AI systems designed to serve global populations.

pdf bib
Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning
Shivalika Singh | Freddie Vargus | Daniel D’souza | Börje Karlsson | Abinaya Mahendiran | Wei-Yin Ko | Herumb Shandilya | Jay Patel | Deividas Mataciunas | Laura O’Mahony | Mike Zhang | Ramith Hettiarachchi | Joseph Wilson | Marina Machado | Luisa Moura | Dominik Krzemiński | Hakimeh Fadaei | Irem Ergun | Ifeoma Okoh | Aisha Alaagib | Oshan Mudannayake | Zaid Alyafeai | Vu Chien | Sebastian Ruder | Surya Guthikonda | Emad Alghamdi | Sebastian Gehrmann | Niklas Muennighoff | Max Bartolo | Julia Kreutzer | Ahmet Üstün | Marzieh Fadaee | Sara Hooker
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Datasets are foundational to many breakthroughs in modern artificial intelligence. Many recent achievements in the space of natural language processing (NLP) can be attributed to the fine-tuning of pre-trained models on a diverse set of tasks that enables a large language model (LLM) to respond to instructions. Instruction fine-tuning (IFT) requires specifically constructed and annotated datasets. However, existing datasets are almost all in the English language. In this work, our primary goal is to bridge the language gap by building a human-curated instruction-following dataset spanning 65 languages. We worked with fluent speakers of languages from around the world to collect natural instances of instructions and completions. Furthermore, we create the most extensive multilingual collection to date, comprising 513 million instances through templating and augmenting existing datasets across 114 languages. In total, we contribute three key resources: we develop and open-source the Aya Dataset, the Aya Collection, and the Aya Evaluation Suite. The Aya initiative also serves as a valuable case study in participatory research, involving collaborators from 119 countries. We see this as an important framework for future research collaborations that aim to bridge gaps in resources.

pdf bib
Back to Basics: Revisiting REINFORCE-Style Optimization for Learning from Human Feedback in LLMs
Arash Ahmadian | Chris Cremer | Matthias Gallé | Marzieh Fadaee | Julia Kreutzer | Olivier Pietquin | Ahmet Üstün | Sara Hooker
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

AI alignment in the shape of Reinforcement Learning from Human Feedback (RLHF) is increasingly treated as a crucial ingredient for high performance large language models. Proximal Policy Optimization (PPO) has been installed by the seminal literature as the standard method for the RL part of RLHF. However, it involves both high computational cost and sensitive hyperparameter tuning. We posit that most of the motivational principles that led to the development of PPO are less of a practical concern in RLHF and advocate for a less computationally expensive method that preserves and even increases performance. We revisit how alignment from human preferences is formulated in the context of RL. Keeping simplicity as a guiding principle, we show that many components of PPO are unnecessary in an RLHF context and that far simpler REINFORCE-style optimization variants outperform both PPO and newly proposed “RL-free” methods such as DPO and RAFT. Our work suggests that careful adaptation to LLMs alignment characteristics allows benefiting from online RL optimization at low cost.

pdf bib
Aya Model: An Instruction Finetuned Open-Access Multilingual Language Model
Ahmet Üstün | Viraat Aryabumi | Zheng Yong | Wei-Yin Ko | Daniel D’souza | Gbemileke Onilude | Neel Bhandari | Shivalika Singh | Hui-Lee Ooi | Amr Kayid | Freddie Vargus | Phil Blunsom | Shayne Longpre | Niklas Muennighoff | Marzieh Fadaee | Julia Kreutzer | Sara Hooker
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent breakthroughs in large language models (LLMs) have centered around a handful of data-rich languages. What does it take to broaden access to breakthroughs beyond first-class citizen languages? Our work introduces Aya, a massively multilingual generative language model that follows instructions in 101 languages of which over 50% are considered as lower-resourced. Aya outperforms mT0 and BLOOMZ on the majority of tasks while covering double the number of languages. We introduce extensive new evaluation suites that broaden the state-of-art for multilingual eval across 99 languages —— including discriminative and generative tasks, human evaluation, and simulated win rates that cover both held-out tasks and in-distribution performance. Furthermore, we conduct detailed investigations on the optimal finetuning mixture composition, data pruning, as well as the toxicity, bias, and safety of our models.

2023

pdf bib
Elo Uncovered: Robustness and Best Practices in Language Model Evaluation
Meriem Boubdir | Edward Kim | Beyza Ermis | Sara Hooker | Marzieh Fadaee
Proceedings of the Third Workshop on Natural Language Generation, Evaluation, and Metrics (GEM)

In Natural Language Processing (NLP), the Elo rating system, well-established for ranking dynamic competitors in games like chess, has seen increasing adoption for evaluating Large Language Models (LLMs) through “A vs B” paired comparisons. However, while popular, the system’s suitability for assessing entities with constant skill levels, such as LLMs, remains relatively unexplored. Our study investigates the sensitivity and reproducibility of Elo scores for LLMs, integrating both synthetic and human feedback. We show that Elo ratings for LLMs stabilize with 100 or more comparison permutations. A lower K-factor is preferable for closely matched models, whereas a higher K-factor better distinguishes models with clear performance differences. We also report that transitivity (A B and B C implies A C) does not consistently hold, particularly when models demonstrate similar performance. Our empirical findings provide guidelines for more reliable LLM evaluation.

2020

pdf bib
A New Neural Search and Insights Platform for Navigating and Organizing AI Research
Marzieh Fadaee | Olga Gureenkova | Fernando Rejon Barrera | Carsten Schnober | Wouter Weerkamp | Jakub Zavrel
Proceedings of the First Workshop on Scholarly Document Processing

To provide AI researchers with modern tools for dealing with the explosive growth of the research literature in their field, we introduce a new platform, AI Research Navigator, that combines classical keyword search with neural retrieval to discover and organize relevant literature. The system provides search at multiple levels of textual granularity, from sentences to aggregations across documents, both in natural language and through navigation in a domain specific Knowledge Graph. We give an overview of the overall architecture of the system and of the components for document analysis, question answering, search, analytics, expert search, and recommendations.

pdf bib
The Unreasonable Volatility of Neural Machine Translation Models
Marzieh Fadaee | Christof Monz
Proceedings of the Fourth Workshop on Neural Generation and Translation

Recent works have shown that Neural Machine Translation (NMT) models achieve impressive performance, however, questions about understanding the behavior of these models remain unanswered. We investigate the unexpected volatility of NMT models where the input is semantically and syntactically correct. We discover that with trivial modifications of source sentences, we can identify cases where unexpected changes happen in the translation and in the worst case lead to mistranslations. This volatile behavior of translating extremely similar sentences in surprisingly different ways highlights the underlying generalization problem of current NMT models. We find that both RNN and Transformer models display volatile behavior in 26% and 19% of sentence variations, respectively.

2018

pdf bib
Examining the Tip of the Iceberg: A Data Set for Idiom Translation
Marzieh Fadaee | Arianna Bisazza | Christof Monz
Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018)

pdf bib
Back-Translation Sampling by Targeting Difficult Words in Neural Machine Translation
Marzieh Fadaee | Christof Monz
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Neural Machine Translation has achieved state-of-the-art performance for several language pairs using a combination of parallel and synthetic data. Synthetic data is often generated by back-translating sentences randomly sampled from monolingual data using a reverse translation model. While back-translation has been shown to be very effective in many cases, it is not entirely clear why. In this work, we explore different aspects of back-translation, and show that words with high prediction loss during training benefit most from the addition of synthetic data. We introduce several variations of sampling strategies targeting difficult-to-predict words using prediction losses and frequencies of words. In addition, we also target the contexts of difficult words and sample sentences that are similar in context. Experimental results for the WMT news translation task show that our method improves translation quality by up to 1.7 and 1.2 Bleu points over back-translation using random sampling for German-English and English-German, respectively.

2017

pdf bib
Learning Topic-Sensitive Word Representations
Marzieh Fadaee | Arianna Bisazza | Christof Monz
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Distributed word representations are widely used for modeling words in NLP tasks. Most of the existing models generate one representation per word and do not consider different meanings of a word. We present two approaches to learn multiple topic-sensitive representations per word by using Hierarchical Dirichlet Process. We observe that by modeling topics and integrating topic distributions for each document we obtain representations that are able to distinguish between different meanings of a given word. Our models yield statistically significant improvements for the lexical substitution task indicating that commonly used single word representations, even when combined with contextual information, are insufficient for this task.

pdf bib
Data Augmentation for Low-Resource Neural Machine Translation
Marzieh Fadaee | Arianna Bisazza | Christof Monz
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

The quality of a Neural Machine Translation system depends substantially on the availability of sizable parallel corpora. For low-resource language pairs this is not the case, resulting in poor translation quality. Inspired by work in computer vision, we propose a novel data augmentation approach that targets low-frequency words by generating new sentence pairs containing rare words in new, synthetically created contexts. Experimental results on simulated low-resource settings show that our method improves translation quality by up to 2.9 BLEU points over the baseline and up to 3.2 BLEU over back-translation.