Mengyu Zhou


2024

pdf bib
Vision Language Models for Spreadsheet Understanding: Challenges and Opportunities
Shiyu Xia | Junyu Xiong | Haoyu Dong | Jianbo Zhao | Yuzhang Tian | Mengyu Zhou | Yeye He | Shi Han | Dongmei Zhang
Proceedings of the 3rd Workshop on Advances in Language and Vision Research (ALVR)

This paper explores capabilities of Vision Language Models on spreadsheet comprehension. We propose three self-supervised challenges with corresponding evaluation metrics to comprehensively evaluate VLMs on Optical Character Recognition (OCR), spatial perception, and visual format recognition. Additionally, we utilize the spreadsheet table detection task to assess the overall performance of VLMs by integrating these challenges. To probe VLMs more finely, we propose three spreadsheet-to-image settings: column width adjustment, style change, and address augmentation. We propose variants of prompts to address the above tasks in different settings. Notably, to leverage the strengths of VLMs in understanding text rather than two-dimensional positioning, we propose to decode cell values on the four boundaries of the table in spreadsheet boundary detection. Our findings reveal that VLMs demonstrate promising OCR capabilities but produce unsatisfactory results due to cell omission and misalignment, and they notably exhibit insufficient spatial and format recognition skills, motivating future work to enhance VLMs’ spreadsheet data comprehension capabilities using our methods to generate extensive spreadsheet-image pairs in various settings.

pdf bib
CoCoST: Automatic Complex Code Generation with Online Searching and Correctness Testing
Xinyi He | Jiaru Zou | Yun Lin | Mengyu Zhou | Shi Han | Zejian Yuan | Dongmei Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Large Language Models have revolutionized code generation ability by converting natural language descriptions into executable code. However, generating complex code within real-world scenarios remains challenging due to intricate structures, subtle bugs, understanding of advanced data types, and lack of supplementary contents. To address these challenges, we introduce the CoCoST framework, which enhances complex code generation by online searching for more information with planned queries and correctness testing for code refinement. Moreover, CoCoST serializes the complex inputs and outputs to improve comprehension and generates test cases to ensure the adaptability for real-world applications. CoCoST is validated through rigorous experiments on the DS-1000 and ClassEval datasets. Experimental results show that CoCoST substantially improves the quality of complex code generation, highlighting its potential to enhance the practicality of LLMs in generating complex code.

pdf bib
Encoding Spreadsheets for Large Language Models
Haoyu Dong | Jianbo Zhao | Yuzhang Tian | Junyu Xiong | Mengyu Zhou | Yun Lin | José Cambronero | Yeye He | Shi Han | Dongmei Zhang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Spreadsheets are characterized by their extensive two-dimensional grids, flexible layouts, and varied formatting options, which pose significant challenges for large language models (LLMs). In response, we introduce SheetEncoder, pioneering an efficient encoding method designed to unleash and optimize LLMs’ powerful understanding and reasoning capability on spreadsheets. Initially, we propose a vanilla serialization approach that incorporates cell addresses, values, and formats. However, this approach was limited by LLMs’ token constraints, making it impractical for most applications. To tackle this challenge, three innovative modules are proposed to compress spreadsheets effectively: structural-anchor-based compression, inverse index translation, and data-format-aware aggregation. It significantly improves performance in spreadsheet table detection task, outperforming the vanilla approach by 25.6% in GPT4’s in-context learning setting. Moreover, fine-tuned LLM with SheetEncoder has an average compression ratio of 25×, but achieves a state-of-the-art 78.9% F1 score, surpassing the best existing models by 12.3%, demonstrating that SheetEncoder greatly boosts LLMs’s performance on spreadsheet data.

pdf bib
PromptIntern: Saving Inference Costs by Internalizing Recurrent Prompt during Large Language Model Fine-tuning
Jiaru Zou | Mengyu Zhou | Tao Li | Shi Han | Dongmei Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024

Recent advances in fine-tuning large language models (LLMs) have greatly enhanced their usage in domain-specific tasks. Despite the success, fine-tuning continues to rely on repeated and lengthy prompts, which escalate computational expenses, require more resources, and lead to slower inference. In this paper, we present a novel approach, PromptIntern, which internalizes prompt knowledge during model fine-tuning to achieve efficient inference and save costs. Instead of compressing the prompts for a vanilla model, PromptIntern aims to embed the recurrent prompt directly into the model parameters. We design a fine-tuning pipeline that includes instruction template compression, few-shot example absorption, and a progressive internalization strategy, effectively diminishing the need for intricate prompts during inference. Comprehensive experiments on challenging NL2Code tasks demonstrate that our method reduces input tokens by more than 90%, accelerates inference by 4.2 times, and reduces monetary inference costs by 88.3%.

pdf bib
TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning
Yuan Sui | Jiaru Zou | Mengyu Zhou | Xinyi He | Lun Du | Shi Han | Dongmei Zhang
Findings of the Association for Computational Linguistics: EMNLP 2024

Table reasoning tasks have shown remarkable progress with the development of large language models (LLMs), which involve interpreting and drawing conclusions from tabular data based on natural language (NL) questions. Existing solutions mainly tested on smaller tables face scalability issues and struggle with complex queries due to incomplete or dispersed data across different table sections. To alleviate these challenges, we propose TAP4LLM as a versatile pre-processor suite for leveraging LLMs in table-based tasks effectively. It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs’ understanding. In each module, we design and compare several common methods for usage in various scenarios, aiming to shed light on the best practices for leveraging LLMs for table-reasoning tasks. Our experiments show that our method improves LLMs’ reasoning capabilities in various tabular tasks and enhances the interaction between LLMs and tabular data by employing effective pre-processing.

2023

pdf bib
AnaMeta: A Table Understanding Dataset of Field Metadata Knowledge Shared by Multi-dimensional Data Analysis Tasks
Xinyi He | Mengyu Zhou | Mingjie Zhou | Jialiang Xu | Xiao Lv | Tianle Li | Yijia Shao | Shi Han | Zejian Yuan | Dongmei Zhang
Findings of the Association for Computational Linguistics: ACL 2023

Tabular data analysis is performed everyday across various domains. It requires an accurate understanding of field semantics to correctly operate on table fields and find common patterns in daily analysis. In this paper, we introduce the AnaMeta dataset, a collection of 467k tables with derived supervision labels for four types of commonly used field metadata: measure/dimension dichotomy, common field roles, semantic field type, and default aggregation function. We evaluate a wide range of models for inferring metadata as the benchmark. We also propose a multi-encoder framework, called KDF, which improves the metadata understanding capability of tabular models by incorporating distribution and knowledge information. Furthermore, we propose four interfaces for incorporating field metadata into downstream analysis tasks.

2022

pdf bib
Towards Robust Numerical Question Answering: Diagnosing Numerical Capabilities of NLP Systems
Jialiang Xu | Mengyu Zhou | Xinyi He | Shi Han | Dongmei Zhang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Numerical Question Answering is the task of answering questions that require numerical capabilities. Previous works introduce general adversarial attacks to Numerical Question Answering, while not systematically exploring numerical capabilities specific to the topic. In this paper, we propose to conduct numerical capability diagnosis on a series of Numerical Question Answering systems and datasets. A series of numerical capabilities are highlighted, and corresponding dataset perturbations are designed. Empirical results indicate that existing systems are severely challenged by these perturbations. E.g., Graph2Tree experienced a 53.83% absolute accuracy drop against the “Extra” perturbation on ASDiv-a, and BART experienced 13.80% accuracy drop against the “Language” perturbation on the numerical subset of DROP. As a counteracting approach, we also investigate the effectiveness of applying perturbations as data augmentation to relieve systems’ lack of robust numerical capabilities. With experiment analysis and empirical studies, it is demonstrated that Numerical Question Answering with robust numerical capabilities is still to a large extent an open question. We discuss future directions of Numerical Question Answering and summarize guidelines on future dataset collection and system design.

pdf bib
FormLM: Recommending Creation Ideas for Online Forms by Modelling Semantic and Structural Information
Yijia Shao | Mengyu Zhou | Yifan Zhong | Tao Wu | Hongwei Han | Shi Han | Gideon Huang | Dongmei Zhang
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Online forms are widely used to collect data from human and have a multi-billion market. Many software products provide online services for creating semi-structured forms where questions and descriptions are organized by predefined structures. However, the design and creation process of forms is still tedious and requires expert knowledge. To assist form designers, in this work we present FormLM to model online forms (by enhancing pre-trained language model with form structural information) and recommend form creation ideas (including question / options recommendations and block type suggestion). For model training and evaluation, we collect the first public online form dataset with 62K online forms. Experiment results show that FormLM significantly outperforms general-purpose language models on all tasks, with an improvement by 4.71 on Question Recommendation and 10.6 on Block Type Suggestion in terms of ROUGE-1 and Macro-F1, respectively.