Hate speech (HS) on social media exacerbates misinformation and baseless prejudices. Evidence-supported counterspeech (CS) is crucial for correcting misinformation and reducing prejudices through facts. Existing methods for generating evidence-supported CS often lack clear guidance with a core claim for organizing evidence and do not adequately address factuality and faithfulness hallucinations in CS within anti-hate contexts. In this paper, to mitigate the aforementioned, we propose F2RL, a Factuality and Faithfulness Reinforcement Learning framework for generating claim-guided and evidence-supported CS. Firstly, we generate counter-claims based on hate speech and design a self-evaluation mechanism to select the most appropriate one. Secondly, we propose a coarse-to-fine evidence retrieval method. This method initially generates broad queries to ensure the diversity of evidence, followed by carefully reranking the retrieved evidence to ensure its relevance to the claim. Finally, we design a reinforcement learning method with a triplet-based factuality reward model and a multi-aspect faithfulness reward model. The method rewards the generator to encourage greater factuality, more accurate refutation of hate speech, consistency with the claim, and better utilization of evidence. Extensive experiments on three benchmark datasets demonstrate that the proposed framework achieves excellent performance in CS generation, with strong factuality and faithfulness.
Event Causality Identification (ECI) aims to detect causal relations between events in unstructured texts. This task is challenged by the lack of data and explicit causal clues. Some methods incorporate explicit knowledge from external knowledge graphs (KGs) into Pre-trained Language Models (PLMs) to tackle these issues, achieving certain accomplishments. However, they ignore that existing KGs usually contain trivial knowledge which may prejudice the performance. Moreover, they simply integrate the concept triplets, underutilizing the deep interaction between the text and external graph. In this paper, we propose an effective pipeline DFP, i.e., Distill, Fuse and Pre-train, to build a commonsense-aware pre-trained model which integrates reliable task-specific knowledge from commonsense graphs. This pipeline works as follows: (1) To leverage the reliable knowledge, commonsense graph distillation is proposed to distill commonsense graphs and obtain the meta-graph which contain credible task-oriented knowledge. (2) To model the deep interaction between the text and external graph, heterogeneous information fusion is proposed to fuse them through a commonsense-aware memory network. (3) Continual pre-training designs three continual pre-training tasks to further align and fuse the text and the commonsense meta-graph. Through extensive experiments on two benchmarks, we demonstrate the validity of our pipeline.
The goal of knowledge graph completion (KGC) is to predict missing facts among entities. Previous methods for KGC re-ranking are mostly built on non-generative language models to obtain the probability of each candidate. Recently, generative large language models (LLMs) have shown outstanding performance on several tasks such as information extraction and dialog systems. Leveraging them for KGC re-ranking is beneficial for leveraging the extensive pre-trained knowledge and powerful generative capabilities. However, it may encounter new problems when accomplishing the task, namely mismatch, misordering and omission. To this end, we introduce KC-GenRe, a knowledge-constrained generative re-ranking method based on LLMs for KGC. To overcome the mismatch issue, we formulate the KGC re-ranking task as a candidate identifier sorting generation problem implemented by generative LLMs. To tackle the misordering issue, we develop a knowledge-guided interactive training method that enhances the identification and ranking of candidates. To address the omission issue, we design a knowledge-augmented constrained inference method that enables contextual prompting and controlled generation, so as to obtain valid rankings. Experimental results show that KG-GenRe achieves state-of-the-art performance on four datasets, with gains of up to 6.7% and 7.7% in the MRR and Hits@1 metric compared to previous methods, and 9.0% and 11.1% compared to that without re-ranking. Extensive analysis demonstrates the effectiveness of components in KG-GenRe.
Named Entity Recognition (NER) has so far evolved from the traditional flat NER to overlapped and discontinuous NER. They have mostly been solved separately, with only several exceptions that concurrently tackle three tasks with a single model. The current best-performing method formalizes the unified NER as word-word relation classification, which barely focuses on mention content learning and fails to detect entity mentions comprising a single word. In this paper, we propose a two-stage span-based framework with templates, namely, T2-NER, to resolve the unified NER task. The first stage is to extract entity spans, where flat and overlapped entities can be recognized. The second stage is to classify over all entity span pairs, where discontinuous entities can be recognized. Finally, multi-task learning is used to jointly train two stages. To improve the efficiency of span-based model, we design grouped templates and typed templates for two stages to realize batch computations. We also apply an adjacent packing strategy and a latter packing strategy to model discriminative boundary information and learn better span (pair) representation. Moreover, we introduce the syntax information to enhance our span representation. We perform extensive experiments on eight benchmark datasets for flat, overlapped, and discontinuous NER, where our model beats all the current competitive baselines, obtaining the best performance of unified NER.
Recently, Transformer has achieved great success in Chinese named entity recognition (NER) owing to its good parallelism and ability to model long-range dependencies, which utilizes self-attention to encode context. However, the fully connected way of self-attention may scatter the attention distribution and allow some irrelevant character information to be integrated, leading to entity boundaries being misidentified. In this paper, we propose a data-driven Adaptive Threshold Selective Self-Attention (ATSSA) mechanism that aims to dynamically select the most relevant characters to enhance the Transformer architecture for Chinese NER. In ATSSA, the attention score threshold of each query is automatically generated, and characters with attention score higher than the threshold are selected by the query while others are discarded, so as to address irrelevant attention integration. Experiments on four benchmark Chinese NER datasets show that the proposed ATSSA brings 1.68 average F1 score improvements to the baseline model and achieves state-of-the-art performance.
Nested named entity recognition (NER) is a task in which named entities may overlap with each other. Span-based approaches regard nested NER as a two-stage span enumeration and classification task, thus having the innate ability to handle this task. However, they face the problems of error propagation, ignorance of span boundary, difficulty in long entity recognition and requirement on large-scale annotated data. In this paper, we propose Extract-Select, a span selection framework for nested NER, to tackle these problems. Firstly, we introduce a span selection framework in which nested entities with different input categories would be separately extracted by the extractor, thus naturally avoiding error propagation in two-stage span-based approaches. In the inference phase, the trained extractor selects final results specific to the given entity category. Secondly, we propose a hybrid selection strategy in the extractor, which not only makes full use of span boundary but also improves the ability of long entity recognition. Thirdly, we design a discriminator to evaluate the extraction result, and train both extractor and discriminator with generative adversarial training (GAT). The use of GAT greatly alleviates the stress on the dataset size. Experimental results on four benchmark datasets demonstrate that Extract-Select outperforms competitive nested NER models, obtaining state-of-the-art results. The proposed model also performs well when less labeled data are given, proving the effectiveness of GAT.
Rapid progress has been made in the field of reading comprehension and question answering, where several systems have achieved human parity in some simplified settings. However, the performance of these models degrades significantly when they are applied to more realistic scenarios, such as answers involve various types, multiple text strings are correct answers, or discrete reasoning abilities are required. In this paper, we introduce the Multi-Type Multi-Span Network (MTMSN), a neural reading comprehension model that combines a multi-type answer predictor designed to support various answer types (e.g., span, count, negation, and arithmetic expression) with a multi-span extraction method for dynamically producing one or multiple text spans. In addition, an arithmetic expression reranking mechanism is proposed to rank expression candidates for further confirming the prediction. Experiments show that our model achieves 79.9 F1 on the DROP hidden test set, creating new state-of-the-art results. Source code (https://github.com/huminghao16/MTMSN) is released to facilitate future work.
Open-domain targeted sentiment analysis aims to detect opinion targets along with their sentiment polarities from a sentence. Prior work typically formulates this task as a sequence tagging problem. However, such formulation suffers from problems such as huge search space and sentiment inconsistency. To address these problems, we propose a span-based extract-then-classify framework, where multiple opinion targets are directly extracted from the sentence under the supervision of target span boundaries, and corresponding polarities are then classified using their span representations. We further investigate three approaches under this framework, namely the pipeline, joint, and collapsed models. Experiments on three benchmark datasets show that our approach consistently outperforms the sequence tagging baseline. Moreover, we find that the pipeline model achieves the best performance compared with the other two models.
This paper considers the reading comprehension task in which multiple documents are given as input. Prior work has shown that a pipeline of retriever, reader, and reranker can improve the overall performance. However, the pipeline system is inefficient since the input is re-encoded within each module, and is unable to leverage upstream components to help downstream training. In this work, we present RE3QA, a unified question answering model that combines context retrieving, reading comprehension, and answer reranking to predict the final answer. Unlike previous pipelined approaches, RE3QA shares contextualized text representation across different components, and is carefully designed to use high-quality upstream outputs (e.g., retrieved context or candidate answers) for directly supervising downstream modules (e.g., the reader or the reranker). As a result, the whole network can be trained end-to-end to avoid the context inconsistency problem. Experiments show that our model outperforms the pipelined baseline and achieves state-of-the-art results on two versions of TriviaQA and two variants of SQuAD.
Despite that current reading comprehension systems have achieved significant advancements, their promising performances are often obtained at the cost of making an ensemble of numerous models. Besides, existing approaches are also vulnerable to adversarial attacks. This paper tackles these problems by leveraging knowledge distillation, which aims to transfer knowledge from an ensemble model to a single model. We first demonstrate that vanilla knowledge distillation applied to answer span prediction is effective for reading comprehension systems. We then propose two novel approaches that not only penalize the prediction on confusing answers but also guide the training with alignment information distilled from the ensemble. Experiments show that our best student model has only a slight drop of 0.4% F1 on the SQuAD test set compared to the ensemble teacher, while running 12x faster during inference. It even outperforms the teacher on adversarial SQuAD datasets and NarrativeQA benchmark.