Mir Tafseer Nayeem


2024

pdf bib
KidLM: Advancing Language Models for Children – Early Insights and Future Directions
Mir Tafseer Nayeem | Davood Rafiei
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Recent studies highlight the potential of large language models in creating educational tools for children, yet significant challenges remain in maintaining key child-specific properties such as linguistic nuances, cognitive needs, and safety standards. In this paper, we explore foundational steps toward the development of child-specific language models, emphasizing the necessity of high-quality pre-training data. We introduce a novel user-centric data collection pipeline that involves gathering and validating a corpus specifically written for and sometimes by children. Additionally, we propose a new training objective, Stratified Masking, which dynamically adjusts masking probabilities based on our domain-specific child language data, enabling models to prioritize vocabulary and concepts more suitable for children. Experimental evaluations demonstrate that our model excels in understanding lower grade-level text, maintains safety by avoiding stereotypes, and captures children’s unique preferences. Furthermore, we provide actionable insights for future research and development in child-specific language modeling.

pdf bib
XL-HeadTags: Leveraging Multimodal Retrieval Augmentation for the Multilingual Generation of News Headlines and Tags
Faisal Shohan | Mir Tafseer Nayeem | Samsul Islam | Abu Ubaida Akash | Shafiq Joty
Findings of the Association for Computational Linguistics: ACL 2024

Millions of news articles published online daily can overwhelm readers. Headlines and entity (topic) tags are essential for guiding readers to decide if the content is worth their time. While headline generation has been extensively studied, tag generation remains largely unexplored, yet it offers readers better access to topics of interest. The need for conciseness in capturing readers’ attention necessitates improved content selection strategies for identifying salient and relevant segments within lengthy articles, thereby guiding language models effectively. To address this, we propose to leverage auxiliary information such as images and captions embedded in the articles to retrieve relevant sentences and utilize instruction tuning with variations to generate both headlines and tags for news articles in a multilingual context. To make use of the auxiliary information, we have compiled a dataset named XL-HeadTags, which includes 20 languages across 6 diverse language families. Through extensive evaluation, we demonstrate the effectiveness of our plug-and-play multimodal-multilingual retrievers for both tasks. Additionally, we have developed a suite of tools for processing and evaluating multilingual texts, significantly contributing to the research community by enabling more accurate and efficient analysis across languages.

pdf bib
Are Large Vision Language Models up to the Challenge of Chart Comprehension and Reasoning
Mohammed Saidul Islam | Raian Rahman | Ahmed Masry | Md Tahmid Rahman Laskar | Mir Tafseer Nayeem | Enamul Hoque
Findings of the Association for Computational Linguistics: EMNLP 2024

Natural language is a powerful complementary modality of communication for data visualizations, such as bar and line charts. To facilitate chart-based reasoning using natural language, various downstream tasks have been introduced recently such as chart question answering, chart summarization, and fact-checking with charts. These tasks pose a unique challenge, demanding both vision-language reasoning and a nuanced understanding of chart data tables, visual encodings, and natural language instructions. Despite the recent success of Large Language Models (LLMs) across diverse NLP tasks, their abilities and limitations in the realm of data visualization remain under-explored, possibly due to their lack of multi-modal capabilities. To bridge the gap, this paper presents one of the first comprehensive evaluations of the recently developed large vision language models (LVLMs) for chart understanding and reasoning tasks. Our evaluation includes a comprehensive assessment of both closed and open-sourced LVLMs across five major chart reasoning tasks. Furthermore, we perform a qualitative evaluation of LVLMs’ performance on a diverse range of charts, aiming to provide a thorough analysis. Our findings reveal that while LVLMs demonstrate impressive abilities in generating fluent texts covering high-level data insights, they also encounter common problems like hallucinations, factual errors, and data bias. We highlight the key strengths and limitations of LVLMs in chart comprehension tasks, offering insights for future research

pdf bib
BenLLM-Eval: A Comprehensive Evaluation into the Potentials and Pitfalls of Large Language Models on Bengali NLP
Mohsinul Kabir | Mohammed Saidul Islam | Md Tahmid Rahman Laskar | Mir Tafseer Nayeem | M Saiful Bari | Enamul Hoque
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large Language Models (LLMs) have emerged as one of the most important breakthroughs in natural language processing (NLP) for their impressive skills in language generation and other language-specific tasks. Though LLMs have been evaluated in various tasks, mostly in English, they have not yet undergone thorough evaluation in under-resourced languages such as Bengali (Bangla). To this end, this paper introduces BenLLM-Eval, which consists of a comprehensive evaluation of LLMs to benchmark their performance in the low-resourced Bangla language. In this regard, we select various important and diverse Bangla NLP tasks, such as text summarization, question answering, paraphrasing, natural language inference, text classification, and sentiment analysis for zero-shot evaluation of popular LLMs, namely, ChatGPT, LLaMA-2, and Claude-2. Our experimental results demonstrate that while in some Bangla NLP tasks, zero-shot LLMs could achieve performance on par, or even better than current SOTA fine-tuned models; in most tasks, their performance is quite poor (with the performance of open-source LLMs like LLaMA-2 being significantly bad) in comparison to the current SOTA results. Therefore, it calls for further efforts to develop a better understanding of LLMs in low-resource languages like Bangla.

2023

pdf bib
On the Role of Reviewer Expertise in Temporal Review Helpfulness Prediction
Mir Tafseer Nayeem | Davood Rafiei
Findings of the Association for Computational Linguistics: EACL 2023

Helpful reviews have been essential for the success of e-commerce services, as they help customers make quick purchase decisions and benefit the merchants in their sales. While many reviews are informative, others provide little value and may contain spam, excessive appraisal, or unexpected biases. With the large volume of reviews and their uneven quality, the problem of detecting helpful reviews has drawn much attention lately. Existing methods for identifying helpful reviews primarily focus on review text and ignore the two key factors of (1) who post the reviews and (2) when the reviews are posted. Moreover, the helpfulness votes suffer from scarcity for less popular products and recently submitted (a.k.a., cold-start) reviews. To address these challenges, we introduce a dataset and develop a model that integrates the reviewer’s expertise, derived from the past review history of the reviewers, and the temporal dynamics of the reviews to automatically assess review helpfulness. We conduct experiments on our dataset to demonstrate the effectiveness of incorporating these factors and report improved results compared to several well-established baselines.

pdf bib
Shironaam: Bengali News Headline Generation using Auxiliary Information
Abu Ubaida Akash | Mir Tafseer Nayeem | Faisal Tareque Shohan | Tanvir Islam
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Automatic headline generation systems have the potential to assist editors in finding interesting headlines to attract visitors or readers. However, the performance of headline generation systems remains challenging due to the unavailability of sufficient parallel data for low-resource languages like Bengali and the lack of ideal approaches to develop a system for headline generation using pre-trained language models, especially for long news articles. To address these challenges, we present Shironaam, a large-scale dataset in Bengali containing over 240K news article-headline pairings with auxiliary data such as image captions, topic words, and category information. Unlike other headline generation models, this paper uses this auxiliary information to better model this task. Furthermore, we utilize the contextualized language models to design encoder-decoder model for Bengali news headline generation and follow a simple yet cost-effective coarse-to-fine approach using topic-words to retrieve important sentences considering the fixed length requirement of the pre-trained language models. Finally, we conduct extensive experiments on our dataset containing news articles of 13 different categories to demonstrate the effectiveness of incorporating auxiliary information and evaluate our system on a wide range of metrics. The experimental results demonstrate that our methods bring significant improvements (i.e., 3 to 10 percentage points across all evaluation metrics) over the baselines. Also to illustrate the utility and robustness, we report experimental results in few-shot and non-few-shot settings.

2021

pdf bib
Unsupervised Abstractive Summarization of Bengali Text Documents
Radia Rayan Chowdhury | Mir Tafseer Nayeem | Tahsin Tasnim Mim | Md. Saifur Rahman Chowdhury | Taufiqul Jannat
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Abstractive summarization systems generally rely on large collections of document-summary pairs. However, the performance of abstractive systems remains a challenge due to the unavailability of the parallel data for low-resource languages like Bengali. To overcome this problem, we propose a graph-based unsupervised abstractive summarization system in the single-document setting for Bengali text documents, which requires only a Part-Of-Speech (POS) tagger and a pre-trained language model trained on Bengali texts. We also provide a human-annotated dataset with document-summary pairs to evaluate our abstractive model and to support the comparison of future abstractive summarization systems of the Bengali Language. We conduct experiments on this dataset and compare our system with several well-established unsupervised extractive summarization systems. Our unsupervised abstractive summarization model outperforms the baselines without being exposed to any human-annotated reference summaries.

2018

pdf bib
Abstractive Unsupervised Multi-Document Summarization using Paraphrastic Sentence Fusion
Mir Tafseer Nayeem | Tanvir Ahmed Fuad | Yllias Chali
Proceedings of the 27th International Conference on Computational Linguistics

In this work, we aim at developing an unsupervised abstractive summarization system in the multi-document setting. We design a paraphrastic sentence fusion model which jointly performs sentence fusion and paraphrasing using skip-gram word embedding model at the sentence level. Our model improves the information coverage and at the same time abstractiveness of the generated sentences. We conduct our experiments on the human-generated multi-sentence compression datasets and evaluate our system on several newly proposed Machine Translation (MT) evaluation metrics. Furthermore, we apply our sentence level model to implement an abstractive multi-document summarization system where documents usually contain a related set of sentences. We also propose an optimal solution for the classical summary length limit problem which was not addressed in the past research. For the document level summary, we conduct experiments on the datasets of two different domains (e.g., news article and user reviews) which are well suited for multi-document abstractive summarization. Our experiments demonstrate that the methods bring significant improvements over the state-of-the-art methods.

2017

pdf bib
Towards Abstractive Multi-Document Summarization Using Submodular Function-Based Framework, Sentence Compression and Merging
Yllias Chali | Moin Tanvee | Mir Tafseer Nayeem
Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers)

We propose a submodular function-based summarization system which integrates three important measures namely importance, coverage, and non-redundancy to detect the important sentences for the summary. We design monotone and submodular functions which allow us to apply an efficient and scalable greedy algorithm to obtain informative and well-covered summaries. In addition, we integrate two abstraction-based methods namely sentence compression and merging for generating an abstractive sentence set. We design our summarization models for both generic and query-focused summarization. Experimental results on DUC-2004 and DUC-2007 datasets show that our generic and query-focused summarizers have outperformed the state-of-the-art summarization systems in terms of ROUGE-1 and ROUGE-2 recall and F-measure.

pdf bib
Extract with Order for Coherent Multi-Document Summarization
Mir Tafseer Nayeem | Yllias Chali
Proceedings of TextGraphs-11: the Workshop on Graph-based Methods for Natural Language Processing

In this work, we aim at developing an extractive summarizer in the multi-document setting. We implement a rank based sentence selection using continuous vector representations along with key-phrases. Furthermore, we propose a model to tackle summary coherence for increasing readability. We conduct experiments on the Document Understanding Conference (DUC) 2004 datasets using ROUGE toolkit. Our experiments demonstrate that the methods bring significant improvements over the state of the art methods in terms of informativity and coherence.