Structured data, prevalent in tables, databases, and knowledge graphs, poses a significant challenge in its representation. With the advent of large language models (LLMs), there has been a shift towards linearization-based methods, which process structured data as sequential token streams, diverging from approaches that explicitly model structure, often as a graph. Crucially, there remains a gap in our understanding of how these linearization-based methods handle structured data, which is inherently non-linear.This work investigates the linear handling of structured data in encoder-decoder language models, specifically T5. Our findings reveal the model’s ability to mimic human-designed processes such as schema linking and syntax prediction, indicating a deep, meaningful learning of structure beyond simple token sequencing. We also uncover insights into the model’s internal mechanisms, including the ego-centric nature of structure node encodings and the potential for model compression due to modality fusion redundancy. Overall, this work sheds light on the inner workings of linearization-based methods and could potentially provide guidance for future research.
Given the high-stakes nature of healthcare decision-making, we aim to improve the efficiency of human annotators rather than replacing them with fully automated solutions. We introduce a new comprehensive resource, SYMPTOMIFY, a dataset of annotated vaccine adverse reaction reports detailing individual vaccine reactions. The dataset, consisting of over 800k reports, surpasses previous datasets in size. Notably, it features reasoning-based explanations alongside background knowledge obtained via language model knowledge harvesting. We evaluate performance across various methods and learning paradigms, paving the way for future comparisons and benchmarking.
We study the problem of entity detection and normalization applied to patient self-reports of symptoms that arise as side-effects of vaccines. Our application domain presents unique challenges that render traditional classification methods ineffective: the number of entity types is large; and many symptoms are rare, resulting in a long-tail distribution of training examples per entity type. We tackle these challenges with an autoregressive model that generates standardized names of symptoms. We introduce a data augmentation technique to increase the number of training examples for rare symptoms. Experiments on real-life patient vaccine symptom self-reports show that our approach outperforms strong baselines, and that additional examples improve performance on the long-tail entities.
Current medical question answering systems have difficulty processing long, detailed and informally worded questions submitted by patients, called Consumer Health Questions (CHQs). To address this issue, we introduce a medical question understanding and answering system with knowledge grounding and semantic self-supervision. Our system is a pipeline that first summarizes a long, medical, user-written question, using a supervised summarization loss. Then, our system performs a two-step retrieval to return answers. The system first matches the summarized user question with an FAQ from a trusted medical knowledge base, and then retrieves a fixed number of relevant sentences from the corresponding answer document. In the absence of labels for question matching or answer relevance, we design 3 novel, self-supervised and semantically-guided losses. We evaluate our model against two strong retrieval-based question answering baselines. Evaluators ask their own questions and rate the answers retrieved by our baselines and own system according to their relevance. They find that our system retrieves more relevant answers, while achieving speeds 20 times faster. Our self-supervised losses also help the summarizer achieve higher scores in ROUGE, as well as in human evaluation metrics.
Users of medical question answering systems often submit long and detailed questions, making it hard to achieve high recall in answer retrieval. To alleviate this problem, we propose a novel Multi-Task Learning (MTL) method with data augmentation for medical question understanding. We first establish an equivalence between the tasks of question summarization and Recognizing Question Entailment (RQE) using their definitions in the medical domain. Based on this equivalence, we propose a data augmentation algorithm to use just one dataset to optimize for both tasks, with a weighted MTL loss. We introduce gradually soft parameter-sharing: a constraint for decoder parameters to be close, that is gradually loosened as we move to the highest layer. We show through ablation studies that our proposed novelties improve performance. Our method outperforms existing MTL methods across 4 datasets of medical question pairs, in ROUGE scores, RQE accuracy and human evaluation. Finally, we show that our method fares better than single-task learning under 4 low-resource settings.
Syntactic structure is an important component of natural language text. Recent top-performing models in Answer Sentence Selection (AS2) use self-attention and transfer learning, but not syntactic structure. Tree structures have shown strong performance in tasks with sentence pair input like semantic relatedness. We investigate whether tree structures can boost performance in AS2. We introduce the Tree Aggregation Transformer: a novel recursive, tree-structured self-attention model for AS2. The recursive nature of our model is able to represent all levels of syntactic parse trees with only one additional self-attention layer. Without transfer learning, we establish a new state of the art on the popular TrecQA and WikiQA benchmark datasets. Additionally, we evaluate our method on four Community Question Answering datasets, and find that tree-structured representations have limitations with noisy user-generated text. We conduct probing experiments to evaluate how our models leverage tree structures across datasets. Our findings show that the ability of tree-structured models to successfully absorb syntactic information is strongly correlated with a higher performance in AS2.
In this paper, we describe our approach to question summarization and multi-answer summarization in the context of the 2021 MEDIQA shared task (Ben Abacha et al., 2021). We propose two kinds of transfer learning for the abstractive summarization of medical questions. First, we train on HealthCareMagic, a large question summarization dataset collected from an online healthcare service platform. Second, we leverage the ability of the BART encoder-decoder architecture to model both generation and classification tasks to train on the task of Recognizing Question Entailment (RQE) in the medical domain. We show that both transfer learning methods combined achieve the highest ROUGE scores. Finally, we cast the question-driven extractive summarization of multiple relevant answer documents as an Answer Sentence Selection (AS2) problem. We show how we can preprocess the MEDIQA-AnS dataset such that it can be trained in an AS2 setting. Our AS2 model is able to generate extractive summaries achieving high ROUGE scores.
We present an interactive Plotting Agent, a system that enables users to directly manipulate plots using natural language instructions within an interactive programming environment. The Plotting Agent maps language to plot updates. We formulate this problem as a slot-based task-oriented dialog problem, which we tackle with a sequence-to-sequence model. This plotting model while accurate in most cases, still makes errors, therefore, the system allows a feedback mode, wherein the user is presented with a top-k list of plots, among which the user can pick the desired one. From this kind of feedback, we can then, in principle, continuously learn and improve the system. Given that plotting is widely used across data-driven fields, we believe our demonstration will be of interest to both practitioners such as data scientists broadly defined, and researchers interested in natural language interfaces.
Technologies for enhancing well-being, healthcare vigilance and monitoring are on the rise. However, despite patient interest, such technologies suffer from low adoption. One hypothesis for this limited adoption is loss of human interaction that is central to doctor-patient encounters. In this paper we seek to address this limitation via a conversational agent that adopts one aspect of in-person doctor-patient interactions: A human avatar to facilitate medical grounded question answering. This is akin to the in-person scenario where the doctor may point to the human body or the patient may point to their own body to express their conditions. Additionally, our agent has multiple interaction modes, that may give more options for the patient to use the agent, not just for medical question answering, but also to engage in conversations about general topics and current events. Both the avatar, and the multiple interaction modes could help improve adherence. We present a high level overview of the design of our agent, Marie Bot Wellbeing. We also report implementation details of our early prototype , and present preliminary results.
Understanding the intent of medical questions asked by patients, or Consumer Health Questions, is an essential skill for medical Conversational AI systems. We propose a novel data-augmented and simple joint learning approach combining question summarization and Recognizing Question Entailment (RQE) in the medical domain. Our data augmentation approach enables to use just one dataset for joint learning. We show improvements on both tasks across four biomedical datasets in accuracy (+8%), ROUGE-1 (+2.5%) and human evaluation scores. Human evaluation shows joint learning generates faithful and informative summaries. Finally, we release our code, the two question summarization datasets extracted from a large-scale medical dialogue dataset, as well as our augmented datasets.
This paper presents the problem of conversational plotting agents that carry out plotting actions from natural language instructions. To facilitate the development of such agents, we introduce ChartDialogs, a new multi-turn dialog dataset, covering a popular plotting library, matplotlib. The dataset contains over 15,000 dialog turns from 3,200 dialogs covering the majority of matplotlib plot types. Extensive experiments show the best-performing method achieving 61% plotting accuracy, demonstrating that the dataset presents a non-trivial challenge for future research on this task.
Attention mechanisms have improved the performance of NLP tasks while allowing models to remain explainable. Self-attention is currently widely used, however interpretability is difficult due to the numerous attention distributions. Recent work has shown that model representations can benefit from label-specific information, while facilitating interpretation of predictions. We introduce the Label Attention Layer: a new form of self-attention where attention heads represent labels. We test our novel layer by running constituency and dependency parsing experiments and show our new model obtains new state-of-the-art results for both tasks on both the Penn Treebank (PTB) and Chinese Treebank. Additionally, our model requires fewer self-attention layers compared to existing work. Finally, we find that the Label Attention heads learn relations between syntactic categories and show pathways to analyze errors.
We consider the problem of extracting from text commonsense knowledge pertaining to human senses such as sound and smell. First, we consider the problem of recognizing mentions of human senses in text. Our contribution is a method for acquiring labeled data. Experiments show the effectiveness of our proposed data labeling approach when used with standard machine learning models on the task of sense recognition in text. Second, we propose to extract novel, common sense relationships pertaining to sense perception concepts. Our contribution is a process for generating labeled data by leveraging large corpora and crowdsourcing questionnaires.
This paper presents computational approaches for automatically detecting critical plot twists in reviews of media products. First, we created a large-scale book review dataset that includes fine-grained spoiler annotations at the sentence-level, as well as book and (anonymized) user information. Second, we carefully analyzed this dataset, and found that: spoiler language tends to be book-specific; spoiler distributions vary greatly across books and review authors; and spoiler sentences tend to jointly appear in the latter part of reviews. Third, inspired by these findings, we developed an end-to-end neural network architecture to detect spoiler sentences in review corpora. Quantitative and qualitative results demonstrate that the proposed method substantially outperforms existing baselines.
Inducing multilingual word embeddings by learning a linear map between embedding spaces of different languages achieves remarkable accuracy on related languages. However, accuracy drops substantially when translating between distant languages. Given that languages exhibit differences in vocabulary, grammar, written form, or syntax, one would expect that embedding spaces of different languages have different structures especially for distant languages. With the goal of capturing such differences, we propose a method for learning neighborhood sensitive maps, NORMA. Our experiments show that NORMA outperforms current state-of-the-art methods for word translation between distant languages.
We investigate the behavior of maps learned by machine translation methods. The maps translate words by projecting between word embedding spaces of different languages. We locally approximate these maps using linear maps, and find that they vary across the word embedding space. This demonstrates that the underlying maps are non-linear. Importantly, we show that the locally linear maps vary by an amount that is tightly correlated with the distance between the neighborhoods on which they are trained. Our results can be used to test non-linear methods, and to drive the design of more accurate maps for word translation.
Leveraging zero-shot learning to learn mapping functions between vector spaces of different languages is a promising approach to bilingual dictionary induction. However, methods using this approach have not yet achieved high accuracy on the task. In this paper, we propose a bridging approach, where our main contribution is a knowledge distillation training objective. As teachers, rich resource translation paths are exploited in this role. And as learners, translation paths involving low resource languages learn from the teachers. Our training objective allows seamless addition of teacher translation paths for any given low resource pair. Since our approach relies on the quality of monolingual word embeddings, we also propose to enhance vector representations of both the source and target language with linguistic information. Our experiments on various languages show large performance gains from our distillation training objective, obtaining as high as 17% accuracy improvements.