In many NLP applications, to mitigate data deficiency in a target task, source data is collected to help with target model training. Existing transfer learning methods either select a subset of source examples that are close to the target domain or try to adapt all source examples into the target domain, then use selected or adapted source examples to train the target model. These methods either incur significant information loss or bear the risk that after adaptation, source examples which are originally already in the target domain may be outside the target domain. To address the limitations of these methods, we propose a four-level optimization based framework which simultaneously selects and adapts source data. Our method can automatically identify in-domain and out-of-domain source examples and apply example-specific processing methods: selection for in-domain examples and adaptation for out-of-domain examples. Experiments on various datasets demonstrate the effectiveness of our proposed method.
Pretrained Language Models (PLMs) have advanced Natural Language Processing (NLP) tasks significantly, but finetuning PLMs on low-resource datasets poses significant challenges such as instability and overfitting. Previous methods tackle these issues by finetuning a strategically chosen subnetwork on a downstream task, while keeping the remaining weights fixed to the pretrained weights. However, they rely on a suboptimal criteria for sub-network selection, leading to suboptimal solutions. To address these limitations, we propose a regularization method based on attention-guided weight mixup for finetuning PLMs. Our approach represents each network weight as a mixup of task-specific weight and pretrained weight, controlled by a learnable attention parameter, providing finer control over sub-network selection. Furthermore, we employ a bi-level optimization (BLO) based framework on two separate splits of the training dataset, improving generalization and combating overfitting. We validate the efficacy of our proposed method through extensive experiments, demonstrating its superiority over previous methods, particularly in the context of finetuning PLMs on low-resource datasets. Our code is available at https://github.com/Sai-Ashish/Attention_guided_weight_mixup_BLO.
Large-scale pretraining followed by task-specific finetuning has achieved great success in various NLP tasks. Since finetuning all parameters of large pretrained models poses substantial computational and memory challenges, several efficient finetuning methods have been developed. Among them, low-rank adaptation (LoRA), which finetunes low-rank incremental update matrices on top of frozen pretrained weights, has proven particularly effective. Nonetheless, LoRA’s uniform rank assignment across all layers, along with its reliance on an exhaustive search to find the best rank, leads to high computation costs and suboptimal finetuning performance. To address these limitations, we introduce AutoLoRA, a meta learning based framework for automatically identifying the optimal rank of each LoRA layer. AutoLoRA associates each rank-1 matrix in a low-rank update matrix with a selection variable, which determines whether the rank-1 matrix should be discarded. A meta learning based method is developed to learn these selection variables. The optimal rank is determined by thresholding the values of these variables. Our comprehensive experiments on natural language understanding, generation, and sequence labeling demonstrate the effectiveness of AutoLoRA. The code is publicly available at https://github.com/ruz048/AutoLoRA
Task weighting, which assigns weights on the including tasks during training, significantly matters the performance of Multi-task Learning (MTL); thus, recently, there has been an explosive interest in it. However, existing task weighting methods assign weights only based on the training loss, while ignoring the gap between the training loss and generalization loss. It degenerates MTL’s performance. To address this issue, the present paper proposes a novel task weighting algorithm, which automatically weights the tasks via a learning-to-learn paradigm, referred to as MetaWeighting. Extensive experiments are conducted to validate the superiority of our proposed method in multi-task text classification.
Text augmentation is an effective technique in alleviating overfitting in NLP tasks. In existing methods, text augmentation and downstream tasks are mostly performed separately. As a result, the augmented texts may not be optimal to train the downstream model. To address this problem, we propose a three-level optimization framework to perform text augmentation and the downstream task end-to- end. The augmentation model is trained in a way tailored to the downstream task. Our framework consists of three learning stages. A text summarization model is trained to perform data augmentation at the first stage. Each summarization example is associated with a weight to account for its domain difference with the text classification data. At the second stage, we use the model trained at the first stage to perform text augmentation and train a text classification model on the augmented texts. At the third stage, we evaluate the text classification model trained at the second stage and update weights of summarization examples by minimizing the validation loss. These three stages are performed end-to-end. We evaluate our method on several text classification datasets where the results demonstrate the effectiveness of our method. Code is available at https://github.com/Sai-Ashish/End-to-End-Text-Augmentation.
Self-supervised learning (SSL) methods such as Word2vec, BERT, and GPT have shown great effectiveness in language understanding. Contrastive learning, as a recent SSL approach, has attracted increasing attention in NLP. Contrastive learning learns data representations by predicting whether two augmented data instances are generated from the same original data example. Previous contrastive learning methods perform data augmentation and contrastive learning separately. As a result, the augmented data may not be optimal for contrastive learning. To address this problem, we propose a four-level optimization framework that performs data augmentation and contrastive learning end-to-end, to enable the augmented data to be tailored to the contrastive learning task. This framework consists of four learning stages, including training machine translation models for sentence augmentation, pretraining a text encoder using contrastive learning, finetuning a text classification model, and updating weights of translation data by minimizing the validation loss of the classification model, which are performed in a unified way. Experiments on datasets in the GLUE benchmark (Wang et al., 2018a) and on datasets used in Gururangan et al. (2020) demonstrate the effectiveness of our method.
Pathology imaging is broadly used for identifying the causes and effects of diseases or injuries. Given a pathology image, being able to answer questions about the clinical findings contained in the image is very important for medical decision making. In this paper, we aim to develop a pathological visual question answering framework to analyze pathology images and answer medical questions related to these images. To build such a framework, we create PathVQA, a VQA dataset with 32,795 questions asked from 4,998 pathology images. We also propose a three-level optimization framework which performs self-supervised pretraining and VQA finetuning end-to-end to learn powerful visual and textual representations jointly and automatically identifies and excludes noisy self-supervised examples from pretraining. We perform experiments on our created PathVQA dataset and the results demonstrate the effectiveness of our proposed methods. The datasets and code are available at https://github.com/UCSD-AI4H/PathVQA
Under the pandemic of COVID-19, people experiencing COVID19-related symptoms have a pressing need to consult doctors. Because of the shortage of medical professionals, many people cannot receive online consultations timely. To address this problem, we aim to develop a medical dialog system that can provide COVID19-related consultations. We collected two dialog datasets – CovidDialog – (in English and Chinese respectively) containing conversations between doctors and patients about COVID-19. While the largest of their kind, these two datasets are still relatively small compared with general-domain dialog datasets. Training complex dialog generation models on small datasets bears high risk of overfitting. To alleviate overfitting, we develop a multi-task learning approach, which regularizes the data-deficient dialog generation task with a masked token prediction task. Experiments on the CovidDialog datasets demonstrate the effectiveness of our approach. We perform both human evaluation and automatic evaluation of dialogs generated by our method. Results show that the generated responses are promising in being doctor-like, relevant to conversation history, clinically informative and correct. The code and the data are available at https://github.com/UCSD-AI4H/COVID-Dialogue.
Text classification is a widely studied problem and has broad applications. In many real-world problems, the number of texts for training classification models is limited, which renders these models prone to overfitting. To address this problem, we propose SSL-Reg, a data-dependent regularization approach based on self-supervised learning (SSL). SSL (Devlin et al., 2019a) is an unsupervised learning approach that defines auxiliary tasks on input data without using any human-provided labels and learns data representations by solving these auxiliary tasks. In SSL-Reg, a supervised classification task and an unsupervised SSL task are performed simultaneously. The SSL task is unsupervised, which is defined purely on input texts without using any human- provided labels. Training a model using an SSL task can prevent the model from being overfitted to a limited number of class labels in the classification task. Experiments on 17 text classification datasets demonstrate the effectiveness of our proposed method. Code is available at https://github.com/UCSD-AI4H/SSReg.
To develop commonsense-grounded NLP applications, a comprehensive and accurate commonsense knowledge graph (CKG) is needed. It is time-consuming to manually construct CKGs and many research efforts have been devoted to the automatic construction of CKGs. Previous approaches focus on generating concepts that have direct and obvious relationships with existing concepts and lack an capability to generate unobvious concepts. In this work, we aim to bridge this gap. We propose a general graph-to-paths pretraining framework that leverages high-order structures in CKGs to capture high-order relationships between concepts. We instantiate this general framework to four special cases: long path, path-to-path, router, and graph-node-path. Experiments on two datasets demonstrate the effectiveness of our methods. The code will be released via the public GitHub repository.
Medical dialogue systems are promising in assisting in telemedicine to increase access to healthcare services, improve the quality of patient care, and reduce medical costs. To facilitate the research and development of medical dialogue systems, we build large-scale medical dialogue datasets – MedDialog, which contain 1) a Chinese dataset with 3.4 million conversations between patients and doctors, 11.3 million utterances, 660.2 million tokens, covering 172 specialties of diseases, and 2) an English dataset with 0.26 million conversations, 0.51 million utterances, 44.53 million tokens, covering 96 specialties of diseases. To our best knowledge, MedDialog is the largest medical dialogue dataset to date. We pretrain several dialogue generation models on the Chinese MedDialog dataset, including Transformer, GPT, BERT-GPT, and compare their performance. It is shown that models trained on MedDialog are able to generate clinically correct and doctor-like medical dialogues. We also study the transferability of models trained on MedDialog to low-resource medical dialogue generation tasks. It is shown that via transfer learning which finetunes the models pretrained on MedDialog, the performance on medical dialogue generation tasks with small datasets can be greatly improved, as shown in human evaluation and automatic evaluation. The datasets and code are available at https://github.com/UCSD-AI4H/Medical-Dialogue-System
The International Classification of Diseases (ICD) provides a hierarchy of diagnostic codes for classifying diseases. Medical coding – which assigns a subset of ICD codes to a patient visit – is a mandatory process that is crucial for patient care and billing. Manual coding is time-consuming, expensive, and error prone. In this paper, we build a neural architecture for automated coding. It takes the diagnosis descriptions (DDs) of a patient as inputs and selects the most relevant ICD codes. This architecture contains four major ingredients: (1) tree-of-sequences LSTM encoding of code descriptions (CDs), (2) adversarial learning for reconciling the different writing styles of DDs and CDs, (3) isotonic constraints for incorporating the importance order among the assigned codes, and (4) attentional matching for performing many-to-one and one-to-many mappings from DDs to CDs. We demonstrate the effectiveness of the proposed methods on a clinical datasets with 59K patient visits.
Medical imaging is widely used in clinical practice for diagnosis and treatment. Report-writing can be error-prone for unexperienced physicians, and time-consuming and tedious for experienced physicians. To address these issues, we study the automatic generation of medical imaging reports. This task presents several challenges. First, a complete report contains multiple heterogeneous forms of information, including findings and tags. Second, abnormal regions in medical images are difficult to identify. Third, the reports are typically long, containing multiple sentences. To cope with these challenges, we (1) build a multi-task learning framework which jointly performs the prediction of tags and the generation of paragraphs, (2) propose a co-attention mechanism to localize regions containing abnormalities and generate narrations for them, (3) develop a hierarchical LSTM model to generate long paragraphs. We demonstrate the effectiveness of the proposed methods on two publicly available dataset.
Reading comprehension (RC), aiming to understand natural texts and answer questions therein, is a challenging task. In this paper, we study the RC problem on the Stanford Question Answering Dataset (SQuAD). Observing from the training set that most correct answers are centered around constituents in the parse tree, we design a constituent-centric neural architecture where the generation of candidate answers and their representation learning are both based on constituents and guided by the parse tree. Under this architecture, the search space of candidate answers can be greatly reduced without sacrificing the coverage of correct answers and the syntactic, hierarchical and compositional structure among constituents can be well captured, which contributes to better representation learning of the candidate answers. On SQuAD, our method achieves the state of the art performance and the ablation study corroborates the effectiveness of individual modules.