2024
pdf
bib
abs
CoXQL: A Dataset for Parsing Explanation Requests in Conversational XAI Systems
Qianli Wang
|
Tatiana Anikina
|
Nils Feldhus
|
Simon Ostermann
|
Sebastian Möller
Findings of the Association for Computational Linguistics: EMNLP 2024
Conversational explainable artificial intelligence (ConvXAI) systems based on large language models (LLMs) have garnered significant interest from the research community in natural language processing (NLP) and human-computer interaction (HCI). Such systems can provide answers to user questions about explanations in dialogues, have the potential to enhance users’ comprehension and offer more information about the decision-making and generation processes of LLMs. Currently available ConvXAI systems are based on intent recognition rather than free chat, as this has been found to be more precise and reliable in identifying users’ intentions. However, the recognition of intents still presents a challenge in the case of ConvXAI, since little training data exist and the domain is highly specific, as there is a broad range of XAI methods to map requests onto. In order to bridge this gap, we present CoXQL, the first dataset in the NLP domain for user intent recognition in ConvXAI, covering 31 intents, seven of which require filling multiple slots. Subsequently, we enhance an existing parsing approach by incorporating template validations, and conduct an evaluation of several LLMs on CoXQL using different parsing strategies. We conclude that the improved parsing approach (MP+) surpasses the performance of previous approaches. We also discover that intents with multiple slots remain highly challenging for LLMs.
pdf
bib
abs
LLMCheckup: Conversational Examination of Large Language Models via Interpretability Tools and Self-Explanations
Qianli Wang
|
Tatiana Anikina
|
Nils Feldhus
|
Josef Genabith
|
Leonhard Hennig
|
Sebastian Möller
Proceedings of the Third Workshop on Bridging Human--Computer Interaction and Natural Language Processing
Interpretability tools that offer explanations in the form of a dialogue have demonstrated their efficacy in enhancing users’ understanding (Slack et al., 2023; Shen et al., 2023), as one-off explanations may fall short in providing sufficient information to the user. Current solutions for dialogue-based explanations, however, often require external tools and modules and are not easily transferable to tasks they were not designed for. With LLMCheckup, we present an easily accessible tool that allows users to chat with any state-of-the-art large language model (LLM) about its behavior. We enable LLMs to generate explanations and perform user intent recognition without fine-tuning, by connecting them with a broad spectrum of Explainable AI (XAI) methods, including white-box explainability tools such as feature attributions, and self-explanations (e.g., for rationale generation). LLM-based (self-)explanations are presented as an interactive dialogue that supports follow-up questions and generates suggestions. LLMCheckup provides tutorials for operations available in the system, catering to individuals with varying levels of expertise in XAI and supporting multiple input modalities. We introduce a new parsing strategy that substantially enhances the user intent recognition accuracy of the LLM. Finally, we showcase LLMCheckup for the tasks of fact checking and commonsense question answering. Our code repository: https://github.com/DFKI-NLP/LLMCheckup
2023
pdf
bib
abs
InterroLang: Exploring NLP Models and Datasets through Dialogue-based Explanations
Nils Feldhus
|
Qianli Wang
|
Tatiana Anikina
|
Sahil Chopra
|
Cennet Oguz
|
Sebastian Möller
Findings of the Association for Computational Linguistics: EMNLP 2023
While recently developed NLP explainability methods let us open the black box in various ways (Madsen et al., 2022), a missing ingredient in this endeavor is an interactive tool offering a conversational interface. Such a dialogue system can help users explore datasets and models with explanations in a contextualized manner, e.g. via clarification or follow-up questions, and through a natural language interface. We adapt the conversational explanation framework TalkToModel (Slack et al., 2022) to the NLP domain, add new NLP-specific operations such as free-text rationalization, and illustrate its generalizability on three NLP tasks (dialogue act classification, question answering, hate speech detection). To recognize user queries for explanations, we evaluate fine-tuned and few-shot prompting models and implement a novel adapter-based approach. We then conduct two user studies on (1) the perceived correctness and helpfulness of the dialogues, and (2) the simulatability, i.e. how objectively helpful dialogical explanations are for humans in figuring out the model’s predicted label when it’s not shown. We found rationalization and feature attribution were helpful in explaining the model behavior. Moreover, users could more reliably predict the model outcome based on an explanation dialogue rather than one-off explanations.