Qiong Zhang


2020

pdf bib
SemEval-2020 Task 5: Counterfactual Recognition
Xiaoyu Yang | Stephen Obadinma | Huasha Zhao | Qiong Zhang | Stan Matwin | Xiaodan Zhu
Proceedings of the Fourteenth Workshop on Semantic Evaluation

We present a counterfactual recognition (CR) task, the shared Task 5 of SemEval-2020. Counterfactuals describe potential outcomes (consequents) produced by actions or circumstances that did not happen or cannot happen and are counter to the facts (antecedent). Counterfactual thinking is an important characteristic of the human cognitive system; it connects antecedents and consequent with causal relations. Our task provides a benchmark for counterfactual recognition in natural language with two subtasks. Subtask-1 aims to determine whether a given sentence is a counterfactual statement or not. Subtask-2 requires the participating systems to extract the antecedent and consequent in a given counterfactual statement. During the SemEval-2020 official evaluation period, we received 27 submissions to Subtask-1 and 11 to Subtask-2. Our data and baseline code are made publicly available at https://zenodo.org/record/3932442. The task website and leaderboard can be found at https://competitions.codalab.org/competitions/21691.

pdf bib
Review-based Question Generation with Adaptive Instance Transfer and Augmentation
Qian Yu | Lidong Bing | Qiong Zhang | Wai Lam | Luo Si
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

While online reviews of products and services become an important information source, it remains inefficient for potential consumers to exploit verbose reviews for fulfilling their information need. We propose to explore question generation as a new way of review information exploitation, namely generating questions that can be answered by the corresponding review sentences. One major challenge of this generation task is the lack of training data, i.e. explicit mapping relation between the user-posed questions and review sentences. To obtain proper training instances for the generation model, we propose an iterative learning framework with adaptive instance transfer and augmentation. To generate to the point questions about the major aspects in reviews, related features extracted in an unsupervised manner are incorporated without the burden of aspect annotation. Experiments on data from various categories of a popular E-commerce site demonstrate the effectiveness of the framework, as well as the potentials of the proposed review-based question generation task.

pdf bib
Camouflaged Chinese Spam Content Detection with Semi-supervised Generative Active Learning
Zhuoren Jiang | Zhe Gao | Yu Duan | Yangyang Kang | Changlong Sun | Qiong Zhang | Xiaozhong Liu
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

We propose a Semi-supervIsed GeNerative Active Learning (SIGNAL) model to address the imbalance, efficiency, and text camouflage problems of Chinese text spam detection task. A “self-diversity” criterion is proposed for measuring the “worthiness” of a candidate for annotation. A semi-supervised variational autoencoder with masked attention learning approach and a character variation graph-enhanced augmentation procedure are proposed for data augmentation. The preliminary experiment demonstrates the proposed SIGNAL model is not only sensitive to spam sample selection, but also can improve the performance of a series of conventional active learning models for Chinese spam detection task. To the best of our knowledge, this is the first work to integrate active learning and semi-supervised generative learning for text spam detection.

2019

pdf bib
eventAI at SemEval-2019 Task 7: Rumor Detection on Social Media by Exploiting Content, User Credibility and Propagation Information
Quanzhi Li | Qiong Zhang | Luo Si
Proceedings of the 13th International Workshop on Semantic Evaluation

This paper describes our system for SemEval 2019 RumorEval: Determining rumor veracity and support for rumors (SemEval 2019 Task 7). This track has two tasks: Task A is to determine a user’s stance towards the source rumor, and Task B is to detect the veracity of the rumor: true, false or unverified. For stance classification, a neural network model with language features is utilized. For rumor verification, our approach exploits information from different dimensions: rumor content, source credibility, user credibility, user stance, event propagation path, etc. We use an ensemble approach in both tasks, which includes neural network models as well as the traditional classification algorithms. Our system is ranked 1st place in the rumor verification task by both the macro F1 measure and the RMSE measure.

pdf bib
Rumor Detection by Exploiting User Credibility Information, Attention and Multi-task Learning
Quanzhi Li | Qiong Zhang | Luo Si
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

In this study, we propose a new multi-task learning approach for rumor detection and stance classification tasks. This neural network model has a shared layer and two task specific layers. We incorporate the user credibility information into the rumor detection layer, and we also apply attention mechanism in the rumor detection process. The attended information include not only the hidden states in the rumor detection layer, but also the hidden states from the stance detection layer. The experiments on two datasets show that our proposed model outperforms the state-of-the-art rumor detection approaches.

pdf bib
Graph Convolution for Multimodal Information Extraction from Visually Rich Documents
Xiaojing Liu | Feiyu Gao | Qiong Zhang | Huasha Zhao
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Industry Papers)

Visually rich documents (VRDs) are ubiquitous in daily business and life. Examples are purchase receipts, insurance policy documents, custom declaration forms and so on. In VRDs, visual and layout information is critical for document understanding, and texts in such documents cannot be serialized into the one-dimensional sequence without losing information. Classic information extraction models such as BiLSTM-CRF typically operate on text sequences and do not incorporate visual features. In this paper, we introduce a graph convolution based model to combine textual and visual information presented in VRDs. Graph embeddings are trained to summarize the context of a text segment in the document, and further combined with text embeddings for entity extraction. Extensive experiments have been conducted to show that our method outperforms BiLSTM-CRF baselines by significant margins, on two real-world datasets. Additionally, ablation studies are also performed to evaluate the effectiveness of each component of our model.

pdf bib
Using Customer Service Dialogues for Satisfaction Analysis with Context-Assisted Multiple Instance Learning
Kaisong Song | Lidong Bing | Wei Gao | Jun Lin | Lujun Zhao | Jiancheng Wang | Changlong Sun | Xiaozhong Liu | Qiong Zhang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Customers ask questions and customer service staffs answer their questions, which is the basic service model via multi-turn customer service (CS) dialogues on E-commerce platforms. Existing studies fail to provide comprehensive service satisfaction analysis, namely satisfaction polarity classification (e.g., well satisfied, met and unsatisfied) and sentimental utterance identification (e.g., positive, neutral and negative). In this paper, we conduct a pilot study on the task of service satisfaction analysis (SSA) based on multi-turn CS dialogues. We propose an extensible Context-Assisted Multiple Instance Learning (CAMIL) model to predict the sentiments of all the customer utterances and then aggregate those sentiments into service satisfaction polarity. After that, we propose a novel Context Clue Matching Mechanism (CCMM) to enhance the representations of all customer utterances with their matched context clues, i.e., sentiment and reasoning clues. We construct two CS dialogue datasets from a top E-commerce platform. Extensive experimental results are presented and contrasted against a few previous models to demonstrate the efficacy of our model.

pdf bib
Uncover Sexual Harassment Patterns from Personal Stories by Joint Key Element Extraction and Categorization
Yingchi Liu | Quanzhi Li | Marika Cifor | Xiaozhong Liu | Qiong Zhang | Luo Si
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The number of personal stories about sexual harassment shared online has increased exponentially in recent years. This is in part inspired by the #MeToo and #TimesUp movements. Safecity is an online forum for people who experienced or witnessed sexual harassment to share their personal experiences. It has collected >10,000 stories so far. Sexual harassment occurred in a variety of situations, and categorization of the stories and extraction of their key elements will provide great help for the related parties to understand and address sexual harassment. In this study, we manually annotated those stories with labels in the dimensions of location, time, and harassers’ characteristics, and marked the key elements related to these dimensions. Furthermore, we applied natural language processing technologies with joint learning schemes to automatically categorize these stories in those dimensions and extract key elements at the same time. We also uncovered significant patterns from the categorized sexual harassment stories. We believe our annotated data set, proposed algorithms, and analysis will help people who have been harassed, authorities, researchers and other related parties in various ways, such as automatically filling reports, enlightening the public in order to prevent future harassment, and enabling more effective, faster action to be taken.

pdf bib
Detect Camouflaged Spam Content via StoneSkipping: Graph and Text Joint Embedding for Chinese Character Variation Representation
Zhuoren Jiang | Zhe Gao | Guoxiu He | Yangyang Kang | Changlong Sun | Qiong Zhang | Luo Si | Xiaozhong Liu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

The task of Chinese text spam detection is very challenging due to both glyph and phonetic variations of Chinese characters. This paper proposes a novel framework to jointly model Chinese variational, semantic, and contextualized representations for Chinese text spam detection task. In particular, a Variation Family-enhanced Graph Embedding (VFGE) algorithm is designed based on a Chinese character variation graph. The VFGE can learn both the graph embeddings of the Chinese characters (local) and the latent variation families (global). Furthermore, an enhanced bidirectional language model, with a combination gate function and an aggregation learning function, is proposed to integrate the graph and text information while capturing the sequential information. Extensive experiments have been conducted on both SMS and review datasets, to show the proposed method outperforms a series of state-of-the-art models for Chinese spam detection.

pdf bib
Rumor Detection on Social Media: Datasets, Methods and Opportunities
Quanzhi Li | Qiong Zhang | Luo Si | Yingchi Liu
Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda

Social media platforms have been used for information and news gathering, and they are very valuable in many applications. However, they also lead to the spreading of rumors and fake news. Many efforts have been taken to detect and debunk rumors on social media by analyzing their content and social context using machine learning techniques. This paper gives an overview of the recent studies in the rumor detection field. It provides a comprehensive list of datasets used for rumor detection, and reviews the important studies based on what types of information they exploit and the approaches they take. And more importantly, we also present several new directions for future research.

2018

pdf bib
Improve Neural Entity Recognition via Multi-Task Data Selection and Constrained Decoding
Huasha Zhao | Yi Yang | Qiong Zhang | Luo Si
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers)

Entity recognition is a widely benchmarked task in natural language processing due to its massive applications. The state-of-the-art solution applies a neural architecture named BiLSTM-CRF to model the language sequences. In this paper, we propose an entity recognition system that improves this neural architecture with two novel techniques. The first technique is Multi-Task Data Selection, which ensures the consistency of data distribution and labeling guidelines between source and target datasets. The other one is constrained decoding using knowledge base. The decoder of the model operates at the document level, and leverages global and external information sources to further improve performance. Extensive experiments have been conducted to show the advantages of each technique. Our system achieves state-of-the-art results on the English entity recognition task in KBP 2017 official evaluation, and it also yields very strong results in other languages.