Warning: this paper contains content that may be inappropriate or offensive.As generative models become available for public use in various applications, testing and analyzing vulnerabilities of these models has become a priority. In this work, we propose an automatic red teaming framework that evaluates a given black-box model and exposes its vulnerabilities against unsafe and inappropriate content generation. Our framework uses in-context learning in a feedback loop to red team models and trigger them into unsafe content generation. In particular, taking text-to-image models as target models, we explore different feedback mechanisms to automatically learn effective and diverse adversarial prompts. Our experiments demonstrate that even with enhanced safety features, Stable Diffusion (SD) models are vulnerable to our adversarial prompts, raising concerns on their robustness in practical uses. Furthermore, we demonstrate that the proposed framework is effective for red teaming text-to-text models.
When presented with questions involving visual thinking, humans naturally switch reasoning modalities, often forming mental images or drawing visual aids. Large language models have shown promising results in arithmetic and symbolic reasoning by expressing intermediate reasoning in text as a chain of thought, yet struggle to extend this capability to answer text queries that are easily solved by visual reasoning, even with extensive multimodal pretraining. We introduce a simple method, whiteboard-of-thought prompting, to unlock the visual reasoning capabilities of multimodal large language models across modalities. Whiteboard-of-thought prompting provides multimodal large language models with a metaphorical ‘whiteboard’ to draw out reasoning steps as images, then returns these images back to the model for further processing. We find this can be accomplished with no demonstrations or specialized modules, instead leveraging models’ existing ability to write code with libraries such as Matplotlib and Turtle. This simple approach shows state-of-the-art results on four difficult natural language tasks that involve visual and spatial reasoning. We identify multiple settings where GPT-4o using chain-of-thought fails dramatically, including more than one where it achieves 0% accuracy, while whiteboard-of-thought enables up to 92% accuracy in these same settings. We present a detailed exploration of where the technique succeeds as well as its sources of error.
Recently, enabling pretrained language models (PLMs) to perform zero-shot crossmodal tasks such as video question answering has been extensively studied. A popular approach is to learn a projection network that projects visual features into the input text embedding space of a PLM, as well as feed-forward adaptation layers, with the weights of the PLM frozen. However, is it really necessary to learn such additional layers? In this paper, we make the first attempt to demonstrate that the PLM is able to perform zero-shot crossmodal tasks without any crossmodal pretraining, when the observed visual concepts are injected as both additional input text tokens and augmentation in the intermediate features within each feed-forward network for the PLM. Specifically, inputting observed visual concepts as text tokens helps to inject them through the self-attention layers in the PLM; to augment the intermediate features in a way that is compatible with the PLM, we propose to construct adaptation layers based on the intermediate representation of concepts (obtained by solely inputting them to the PLM). These two complementary injection mechanisms form the proposed Deep Concept Injection, which comprehensively enables the PLM to perceive instantly without crossmodal pretraining. Extensive empirical analysis on zero-shot video question answering, as well as visual question answering, shows Deep Concept Injection achieves competitive or even better results in both zero-shot and fine-tuning settings, compared to state-of-the-art methods that require crossmodal pretraining.
Gender-inclusive NLP research has documented the harmful limitations of gender binary-centric large language models (LLM), such as the inability to correctly use gender-diverse English neopronouns (e.g., xe, zir, fae). While data scarcity is a known culprit, the precise mechanisms through which scarcity affects this behavior remain underexplored. We discover LLM misgendering is significantly influenced by Byte-Pair Encoding (BPE) tokenization, the tokenizer powering many popular LLMs. Unlike binary pronouns, BPE overfragments neopronouns, a direct consequence of data scarcity during tokenizer training. This disparate tokenization mirrors tokenizer limitations observed in multilingual and low-resource NLP, unlocking new misgendering mitigation strategies. We propose two techniques: (1) pronoun tokenization parity, a method to enforce consistent tokenization across gendered pronouns, and (2) utilizing pre-existing LLM pronoun knowledge to improve neopronoun proficiency. Our proposed methods outperform finetuning with standard BPE, improving neopronoun accuracy from 14.1% to 58.4%. Our paper is the first to link LLM misgendering to tokenization and deficient neopronoun grammar, indicating that LLMs unable to correctly treat neopronouns as pronouns are more prone to misgender.
We propose a constraint learning schema forfine-tuning Large Language Models (LLMs)with attribute control. Given a training corpusand control criteria formulated as a sequence-level constraint on model outputs, our methodfine-tunes the LLM on the training corpus whileenhancing constraint satisfaction with minimalimpact on its utility and generation quality.Specifically, our approach regularizes the LLMtraining by penalizing the KL divergence be-tween the desired output distribution, which sat-isfies the constraints, and the LLM’s posterior.This regularization term can be approximatedby an auxiliary model trained to decomposethe sequence-level constraints into token-levelguidance, allowing the term to be measuredby a closed-form formulation. To further im-prove efficiency, we design a parallel schemefor concurrently updating both the LLM andthe auxiliary model. We evaluate the empiricalperformance of our approach by controlling thetoxicity when training an LLM. We show thatour approach leads to an LLM that producesfewer inappropriate responses while achievingcompetitive performance on benchmarks and atoxicity detection task
Recent advancement in large language models (LLMs) has offered a strong potential for natural language systems to process informal language. A representative form of informal language is slang, used commonly in daily conversations and online social media. To date, slang has not been comprehensively evaluated in LLMs due partly to the absence of a carefully designed and publicly accessible benchmark. Using movie subtitles, we construct a dataset that supports evaluation on a diverse set of tasks pertaining to automatic processing of slang. For both evaluation and finetuning, we show the effectiveness of our dataset on two core applications: 1) slang detection, and 2) identification of regional and historical sources of slang from natural sentences. We also show how our dataset can be used to probe the output distributions of LLMs for interpretive insights. We find that while LLMs such as GPT-4 achieve good performance in a zero-shot setting, smaller BERT-like models finetuned on our dataset achieve comparable performance. Furthermore, we show that our dataset enables finetuning of LLMs such as GPT-3.5 that achieve substantially better performance than strong zero-shot baselines. Our work offers a comprehensive evaluation and a high-quality benchmark on English slang based on the OpenSubtitles corpus, serving both as a publicly accessible resource and a platform for applying tools for informal language processing.
Large language models (LLMs) are known to generate biased responses where the opinions of certain groups and populations are underrepresented. Here, we present a novel approach to achieve controllable generation of specific viewpoints using LLMs, that can be leveraged to produce multiple perspectives and to reflect the diverse opinions. Moving beyond the traditional reliance on demographics like age, gender, or party affiliation, we introduce a data-driven notion of persona grounded in collaborative filtering, which is defined as either a single individual or a cohort of individuals manifesting similar views across specific inquiries. As individuals in the same demographic group may have different personas, our data-driven persona definition allows for a more nuanced understanding of different (latent) social groups present in the population. In addition to this, we also explore an efficient method to steer LLMs toward the personas that we define. We show that our data-driven personas significantly enhance model steerability, with improvements of between 57%-77% over our best performing baselines.
Natural language often contains ambiguities that can lead to misinterpretation and miscommunication. While humans can handle ambiguities effectively by asking clarifying questions and/or relying on contextual cues and common-sense knowledge, resolving ambiguities can be notoriously hard for machines. In this work, we study ambiguities that arise in text-to-image generative models. We curate the Text-to-image Ambiguity Benchmark (TAB) dataset to study different types of ambiguities in text-to-image generative models. We then propose the Text-to-ImagE Disambiguation (TIED) framework to disambiguate the prompts given to the text-to-image generative models by soliciting clarifications from the end user. Through automatic and human evaluations, we show the effectiveness of our framework in generating more faithful images aligned with end user intention in the presence of ambiguities.
Continual Federated Learning (CFL) combines Federated Learning (FL), the decentralized learning of a central model on a number of client devices that may not communicate their data, and Continual Learning (CL), the learning of a model from a continual stream of data without keeping the entire history. In CL, the main challenge is forgetting what was learned from past data. While replay-based algorithms that keep a small pool of past training data are effective to reduce forgetting, only simple replay sample selection strategies have been applied to CFL in prior work, and no previous work has explored coordination among clients for better sample selection. To bridge this gap, we adapt a replay sample selection objective based on loss gradient diversity to CFL and propose a new relaxation-based selection of samples to optimize the objective. Next, we propose a practical algorithm to coordinate gradient-based replay sample selection across clients without communicating private data. We benchmark our coordinated and uncoordinated replay sample selection algorithms against random sampling-based baselines with language models trained on a large scale de-identified real-world text dataset. We show that gradient-based sample selection methods both boost performance and reduce forgetting compared to random sampling methods, with our coordination method showing gains early in the low replay size regime (when the budget for storing past data is small).
As natural language processing systems become more widespread, it is necessary to address fairness issues in their implementation and deployment to ensure that their negative impacts on society are understood and minimized. However, there is limited work that studies fairness using a multilingual and intersectional framework or on downstream tasks. In this paper, we introduce four multilingual Equity Evaluation Corpora, supplementary test sets designed to measure social biases, and a novel statistical framework for studying unisectional and intersectional social biases in natural language processing. We use these tools to measure gender, racial, ethnic, and intersectional social biases across five models trained on emotion regression tasks in English, Spanish, and Arabic. We find that many systems demonstrate statistically significant unisectional and intersectional social biases. We make our code and datasets available for download.
Slang is a predominant form of informal language making flexible and extended use of words that is notoriously hard for natural language processing systems to interpret. Existing approaches to slang interpretation tend to rely on context but ignore semantic extensions common in slang word usage. We propose a semantically informed slang interpretation (SSI) framework that considers jointly the contextual and semantic appropriateness of a candidate interpretation for a query slang. We perform rigorous evaluation on two large-scale online slang dictionaries and show that our approach not only achieves state-of-the-art accuracy for slang interpretation in English, but also does so in zero-shot and few-shot scenarios where training data is sparse. Furthermore, we show how the same framework can be applied to enhancing machine translation of slang from English to other languages. Our work creates opportunities for the automated interpretation and translation of informal language.
Slang is a common type of informal language, but its flexible nature and paucity of data resources present challenges for existing natural language systems. We take an initial step toward machine generation of slang by developing a framework that models the speaker’s word choice in slang context. Our framework encodes novel slang meaning by relating the conventional and slang senses of a word while incorporating syntactic and contextual knowledge in slang usage. We construct the framework using a combination of probabilistic inference and neural contrastive learning. We perform rigorous evaluations on three slang dictionaries and show that our approach not only outperforms state-of-the-art language models, but also better predicts the historical emergence of slang word usages from 1960s to 2000s. We interpret the proposed models and find that the contrastively learned semantic space is sensitive to the similarities between slang and conventional senses of words. Our work creates opportunities for the automated generation and interpretation of informal language.