2024
pdf
bib
abs
R-BASS : Relevance-aided Block-wise Adaptation for Speech Summarization
Roshan Sharma
|
Ruchira Sharma
|
Hira Dhamyal
|
Rita Singh
|
Bhiksha Raj
Findings of the Association for Computational Linguistics: NAACL 2024
End-to-end speech summarization on long recordings is challenging because of the high computational cost. Block-wise Adaptation for Speech Summarization (BASS) summarizes arbitrarily long sequences by sequentially processing abutting chunks of audio. Despite the benefits of BASS, it has higher compute time due to sequential processing of all blocks, regardless of whether they are relevant to the final summary. In this paper, we propose R-BASS, a new relevance-aware block-wise adaptation method. First, we introduce two approaches to automatically estimate block relevance based on lexical and semantic similarity between the block-level transcript and the summary. Experiments on the How2 dataset show that using ground truth relevance during inference improves efficiency by 63.9 % by dropping irrelevant blocks. Finally, we incorporate relevance scores into training using a novel relevance loss and relevance predictor, and the proposed R-BASS model makes it possible to drop 86.3 % of the blocks while retaining comparable performance, resulting in a 2.2x speedup over BASS.
pdf
bib
abs
On the Evaluation of Speech Foundation Models for Spoken Language Understanding
Siddhant Arora
|
Ankita Pasad
|
Chung-Ming Chien
|
Jionghao Han
|
Roshan Sharma
|
Jee-weon Jung
|
Hira Dhamyal
|
William Chen
|
Suwon Shon
|
Hung-yi Lee
|
Karen Livescu
|
Shinji Watanabe
Findings of the Association for Computational Linguistics: ACL 2024
The Spoken Language Understanding Evaluation (SLUE) suite of benchmark tasks was recently introduced to address the need for openresources and benchmarking of complex spoken language understanding (SLU) tasks, including both classification and sequence generation tasks, on natural speech. The benchmark has demonstrated preliminary success in using pre-trained speech foundation models (SFM) for these SLU tasks. However, the community still lacks a fine-grained understanding of the comparative utility of different SFMs. Inspired by this, we ask: which SFMs offer the most benefits for these complex SLU tasks, and what is the most effective approach for incorporating these SFMs? To answer this, we perform an extensive evaluation of multiple supervised and self-supervised SFMs using several evaluation protocols: (i) frozen SFMs with a lightweight prediction head, (ii) frozen SFMs with a complex prediction head, and (iii) fine-tuned SFMs with a lightweight prediction head. Although the supervised SFMs are pre-trained on much more speech recognition data (with labels), they do not always outperform self-supervised SFMs; the latter tend to perform at least as well as, and sometimes better than, supervised SFMs, especially on the sequence generation tasks in SLUE. While there is no universally optimal way of incorporating SFMs, the complex prediction head gives the best performance for most tasks, although it increases the inference time. We also introduce an open-source toolkit and performance leaderboard, SLUE-PERB, for these tasks and modeling strategies.
pdf
bib
abs
UniverSLU: Universal Spoken Language Understanding for Diverse Tasks with Natural Language Instructions
Siddhant Arora
|
Hayato Futami
|
Jee-weon Jung
|
Yifan Peng
|
Roshan Sharma
|
Yosuke Kashiwagi
|
Emiru Tsunoo
|
Karen Livescu
|
Shinji Watanabe
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)
Recent studies leverage large language models with multi-tasking capabilities, using natural language prompts to guide the model’s behavior and surpassing performance of task-specific models. Motivated by this, we ask: can we build a single model that jointly performs various spoken language understanding (SLU) tasks? We start by adapting a pre-trained automatic speech recognition model to additional tasks using single-token task specifiers. We enhance this approach through instruction tuning, i.e., finetuning by describing the task using natural language instructions followed by the list of label options. Our approach can generalize to new task descriptions for the seen tasks during inference, thereby enhancing its user-friendliness. We demonstrate the efficacy of our single multi-task learning model “UniverSLU” for 12 speech classification and sequence generation task types spanning 17 datasets and 9 languages. On most tasks, UniverSLU achieves competitive performance and often even surpasses task-specific models. Additionally, we assess the zero-shot capabilities, finding that the model generalizes to new datasets and languages for seen task types.
pdf
bib
abs
Speech vs. Transcript: Does It Matter for Human Annotators in Speech Summarization?
Roshan Sharma
|
Suwon Shon
|
Mark Lindsey
|
Hira Dhamyal
|
Bhiksha Raj
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Reference summaries for abstractive speech summarization require human annotation, which can be performed by listening to an audio recording or by reading textual transcripts of the recording. In this paper, we examine whether summaries based on annotators listening to the recordings differ from those based on annotators reading transcripts. Using existing intrinsic evaluation based on human evaluation, automatic metrics, LLM-based evaluation, and a retrieval-based reference-free method, we find that summaries are indeed different based on the source modality, and that speech-based summaries are more factually consistent and information-selective than transcript-based summaries. Transcript-based summaries are impacted by recognition errors in the source, and expert-written summaries are more informative and reliable. We make all the collected data and analysis code public to facilitate the reproduction of our work and advance research in this area.
2023
pdf
bib
abs
SLUE Phase-2: A Benchmark Suite of Diverse Spoken Language Understanding Tasks
Suwon Shon
|
Siddhant Arora
|
Chyi-Jiunn Lin
|
Ankita Pasad
|
Felix Wu
|
Roshan Sharma
|
Wei-Lun Wu
|
Hung-yi Lee
|
Karen Livescu
|
Shinji Watanabe
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Spoken language understanding (SLU) tasks have been studied for many decades in the speech research community, but have not received as much attention as lower-level tasks like speech and speaker recognition. In this work, we introduce several new annotated SLU benchmark tasks based on freely available speech data, which complement existing benchmarks and address gaps in the SLU evaluation landscape. We contribute four tasks: question answering and summarization involve inference over longer speech sequences; named entity localization addresses the speech-specific task of locating the targeted content in the signal; dialog act classification identifies the function of a given speech utterance. In order to facilitate the development of SLU models that leverage the success of pre-trained speech representations, we will release a new benchmark suite, including for each task (i) curated annotations for a relatively small fine-tuning set, (ii) reproducible pipeline (speech recognizer + text model) and end-to-end baseline models and evaluation metrics, (iii) baseline model performance in various types of systems for easy comparisons. We present the details of data collection and annotation and the performance of the baseline models. We also analyze the sensitivity of pipeline models’ performance to the speech recognition accuracy, using more than 20 publicly availablespeech recognition models.
2020
pdf
bib
abs
A Summary of the First Workshop on Language Technology for Language Documentation and Revitalization
Graham Neubig
|
Shruti Rijhwani
|
Alexis Palmer
|
Jordan MacKenzie
|
Hilaria Cruz
|
Xinjian Li
|
Matthew Lee
|
Aditi Chaudhary
|
Luke Gessler
|
Steven Abney
|
Shirley Anugrah Hayati
|
Antonios Anastasopoulos
|
Olga Zamaraeva
|
Emily Prud’hommeaux
|
Jennette Child
|
Sara Child
|
Rebecca Knowles
|
Sarah Moeller
|
Jeffrey Micher
|
Yiyuan Li
|
Sydney Zink
|
Mengzhou Xia
|
Roshan Sharma
|
Patrick Littell
Proceedings of the 1st Joint Workshop on Spoken Language Technologies for Under-resourced languages (SLTU) and Collaboration and Computing for Under-Resourced Languages (CCURL)
Despite recent advances in natural language processing and other language technology, the application of such technology to language documentation and conservation has been limited. In August 2019, a workshop was held at Carnegie Mellon University in Pittsburgh, PA, USA to attempt to bring together language community members, documentary linguists, and technologists to discuss how to bridge this gap and create prototypes of novel and practical language revitalization technologies. The workshop focused on developing technologies to aid language documentation and revitalization in four areas: 1) spoken language (speech transcription, phone to orthography decoding, text-to-speech and text-speech forced alignment), 2) dictionary extraction and management, 3) search tools for corpora, and 4) social media (language learning bots and social media analysis). This paper reports the results of this workshop, including issues discussed, and various conceived and implemented technologies for nine languages: Arapaho, Cayuga, Inuktitut, Irish Gaelic, Kidaw’ida, Kwak’wala, Ojibwe, San Juan Quiahije Chatino, and Seneca.