Sai Muralidhar Jayanthi


2024

pdf bib
SpeechGuard: Exploring the Adversarial Robustness of Multi-modal Large Language Models
Raghuveer Peri | Sai Muralidhar Jayanthi | Srikanth Ronanki | Anshu Bhatia | Karel Mundnich | Saket Dingliwal | Nilaksh Das | Zejiang Hou | Goeric Huybrechts | Srikanth Vishnubhotla | Daniel Garcia-Romero | Sundararajan Srinivasan | Kyu Han | Katrin Kirchhoff
Findings of the Association for Computational Linguistics: ACL 2024

Integrated Speech and Large Language Models (SLMs) that can follow speech instructions and generate relevant text responses have gained popularity lately. However, the safety and robustness of these models remains largely unclear. In this work, we investigate the potential vulnerabilities of such instruction-following speech-language models to adversarial attacks and jailbreaking. Specifically, we design algorithms that can generate adversarial examples to jailbreak SLMs in both white-box and black-box attack settings without human involvement. Additionally, we propose countermeasures to thwart such jailbreaking attacks. Our models, trained on dialog data with speech instructions, achieve state-of-the-art performance on spoken question-answering task, scoring over 80% on both safety and helpfulness metrics. Despite safety guardrails, experiments on jailbreaking demonstrate the vulnerability of SLMs to adversarial perturbations and transfer attacks, with average attack success rates of 90% and 10% respectively when evaluated on a dataset of carefully designed harmful questions spanning 12 different toxic categories. However, we demonstrate that our proposed countermeasures reduce the attack success significantly.

2023

pdf bib
Retrieve and Copy: Scaling ASR Personalization to Large Catalogs
Sai Muralidhar Jayanthi | Devang Kulshreshtha | Saket Dingliwal | Srikanth Ronanki | Sravan Bodapati
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Personalization of automatic speech recognition (ASR) models is a widely studied topic because of its many practical applications. Most recently, attention-based contextual biasing techniques are used to improve the recognition of rare words and/or domain specific entities. However, due to performance constraints, the biasing is often limited to a few thousand entities, restricting real-world usability. To address this, we first propose a “Retrieve and Copy” mechanism to improve latency while retaining the accuracy even when scaled to a large catalog. We also propose a training strategy to overcome the degradation in recall at such scale due to an increased number of confusing entities. Overall, our approach achieves up to 6% more Word Error Rate reduction (WERR) and 3.6% absolute improvement in F1 when compared to a strong baseline. Our method also allows for large catalog sizes of up to 20K without significantly affecting WER and F1-scores, while achieving at least 20% inference speedup per acoustic frame.

2021

pdf bib
Evaluating Pretrained Transformer Models for Entity Linking inTask-Oriented Dialog
Sai Muralidhar Jayanthi | Varsha Embar | Karthik Raghunathan
Proceedings of the 18th International Conference on Natural Language Processing (ICON)

The wide applicability of pretrained transformer models (PTMs) for natural language tasks is well demonstrated, but their ability to comprehend short phrases of text is less explored. To this end, we evaluate different PTMs from the lens of unsupervised Entity Linking in task-oriented dialog across 5 characteristics– syntactic, semantic, short-forms, numeric and phonetic. Our results demonstrate that several of the PTMs produce sub-par results when compared to traditional techniques, albeit competitive to other neural baselines. We find that some of their shortcomings can be addressed by using PTMs fine-tuned for text-similarity tasks, which illustrate an improved ability in comprehending semantic and syntactic correspondences, as well as some improvements for short-forms, numeric and phonetic variations in entity mentions. We perform qualitative analysis to understand nuances in their predictions and discuss scope for further improvements.

pdf bib
A Study of Morphological Robustness of Neural Machine Translation
Sai Muralidhar Jayanthi | Adithya Pratapa
Proceedings of the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonology, and Morphology

In this work, we analyze the robustness of neural machine translation systems towards grammatical perturbations in the source. In particular, we focus on morphological inflection related perturbations. While this has been recently studied for English→French (MORPHEUS) (Tan et al., 2020), it is unclear how this extends to Any→English translation systems. We propose MORPHEUS-MULTILINGUAL that utilizes UniMorph dictionaries to identify morphological perturbations to source that adversely affect the translation models. Along with an analysis of state-of-the-art pretrained MT systems, we train and analyze systems for 11 language pairs using the multilingual TED corpus (Qi et al., 2018). We also compare this to actual errors of non-native speakers using Grammatical Error Correction datasets. Finally, we present a qualitative and quantitative analysis of the robustness of Any→English translation systems.

pdf bib
CodemixedNLP: An Extensible and Open NLP Toolkit for Code-Mixing
Sai Muralidhar Jayanthi | Kavya Nerella | Khyathi Raghavi Chandu | Alan W Black
Proceedings of the Fifth Workshop on Computational Approaches to Linguistic Code-Switching

The NLP community has witnessed steep progress in a variety of tasks across the realms of monolingual and multilingual language processing recently. These successes, in conjunction with the proliferating mixed language interactions on social media, have boosted interest in modeling code-mixed texts. In this work, we present CodemixedNLP, an open-source library with the goals of bringing together the advances in code-mixed NLP and opening it up to a wider machine learning community. The library consists of tools to develop and benchmark versatile model architectures that are tailored for mixed texts, methods to expand training sets, techniques to quantify mixing styles, and fine-tuned state-of-the-art models for 7 tasks in Hinglish. We believe this work has the potential to foster a distributed yet collaborative and sustainable ecosystem in an otherwise dispersed space of code-mixing research. The toolkit is designed to be simple, easily extensible, and resourceful to both researchers as well as practitioners. Demo: http://k-ikkees.pc.cs.cmu.edu:5000 and Library: https://github.com/murali1996/CodemixedNLP

pdf bib
SJ_AJ@DravidianLangTech-EACL2021: Task-Adaptive Pre-Training of Multilingual BERT models for Offensive Language Identification
Sai Muralidhar Jayanthi | Akshat Gupta
Proceedings of the First Workshop on Speech and Language Technologies for Dravidian Languages

In this paper we present our submission for the EACL 2021-Shared Task on Offensive Language Identification in Dravidian languages. Our final system is an ensemble of mBERT and XLM-RoBERTa models which leverage task-adaptive pre-training of multilingual BERT models with a masked language modeling objective. Our system was ranked 1st for Kannada, 2nd for Malayalam and 3rd for Tamil.

2020

pdf bib
Constrained Fact Verification for FEVER
Adithya Pratapa | Sai Muralidhar Jayanthi | Kavya Nerella
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Fact-verification systems are well explored in the NLP literature with growing attention owing to shared tasks like FEVER. Though the task requires reasoning on extracted evidence to verify a claim’s factuality, there is little work on understanding the reasoning process. In this work, we propose a new methodology for fact-verification, specifically FEVER, that enforces a closed-world reliance on extracted evidence. We present an extensive evaluation of state-of-the-art verification models under these constraints.

pdf bib
NeuSpell: A Neural Spelling Correction Toolkit
Sai Muralidhar Jayanthi | Danish Pruthi | Graham Neubig
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System Demonstrations

We introduce NeuSpell, an open-source toolkit for spelling correction in English. Our toolkit comprises ten different models, and benchmarks them on naturally occurring misspellings from multiple sources. We find that many systems do not adequately leverage the context around the misspelt token. To remedy this, (i) we train neural models using spelling errors in context, synthetically constructed by reverse engineering isolated misspellings; and (ii) use richer representations of the context. By training on our synthetic examples, correction rates improve by 9% (absolute) compared to the case when models are trained on randomly sampled character perturbations. Using richer contextual representations boosts the correction rate by another 3%. Our toolkit enables practitioners to use our proposed and existing spelling correction systems, both via a simple unified command line, as well as a web interface. Among many potential applications, we demonstrate the utility of our spell-checkers in combating adversarial misspellings. The toolkit can be accessed at neuspell.github.io.