Large language models with instruction-following abilities have revolutionized the field of artificial intelligence. These models show exceptional generalizability to tackle various real-world tasks through their natural language interfaces. However, their performance heavily relies on high-quality exemplar data, which is often difficult to obtain. This challenge is further exacerbated when it comes to multimodal instruction following. We introduce TextBind, an almost annotation-free framework for empowering LLMs with multi-turn interleaved multimodal instruction-following capabilities. Our approach requires only image-caption pairs and generates multi-turn multimodal instruction-response conversations from a language model. To accommodate interleaved image-text inputs and outputs, we devise MIM, a language model-centric architecture that seamlessly integrates image encoder and decoder models. Extensive quantitative and qualitative experiments demonstrate that MIM trained on TextBind achieves remarkable generation capability in multimodal conversations compared to recent baselines.
Word-level AutoCompletion (WLAC) is a rewarding yet challenging task in Computer-aided Translation. Existing work addresses this task through a classification model based on a neural network that maps the hidden vector of the input context into its corresponding label (i.e., the candidate target word is treated as a label). Since the context hidden vector itself does not take the label into account and it is projected to the label through a linear classifier, the model cannot sufficiently leverage valuable information from the source sentence as verified in our experiments, which eventually hinders its overall performance. To alleviate this issue, this work proposes an energy-based model for WLAC, which enables the context hidden vector to capture crucial information from the source sentence. Unfortunately, training and inference suffer from efficiency and effectiveness challenges, therefore we employ three simple yet effective strategies to put our model into practice. Experiments on four standard benchmarks demonstrate that our reranking-based approach achieves substantial improvements (about 6.07%) over the previous state-of-the-art model. Further analyses show that each strategy of our approach contributes to the final performance.1
Information-seeking conversation, which aims to help users gather information through conversation, has achieved great progress in recent years. However, the research is still stymied by the scarcity of training data. To alleviate this problem, we propose AutoConv for synthetic conversation generation, which takes advantage of the few-shot learning ability and generation capacity of large language models (LLM). Specifically, we formulate the conversation generation problem as a language modeling task, then finetune an LLM with a few human conversations to capture the characteristics of the information-seeking process and use it for generating synthetic conversations with high quality. Experimental results on two frequently-used datasets verify that AutoConv has substantial improvements over strong baselines and alleviates the dependence on human annotation. In addition, we also provide several analysis studies to promote future research.
Question answering plays a pivotal role in human daily life because it involves our acquisition of knowledge about the world. However, due to the dynamic and ever-changing nature of real-world facts, the answer can be completely different when the time constraint in the question changes. Recently, Large Language Models (LLMs) have shown remarkable intelligence in question answering, while our experiments reveal that the aforementioned problems still pose a significant challenge to existing LLMs. This can be attributed to the LLMs’ inability to perform rigorous reasoning based on surface-level text semantics. To overcome this limitation, rather than requiring LLMs to directly answer the question, we propose a novel approach where we reframe the Question Answering task as Programming (QAaP). Concretely, by leveraging modern LLMs’ superior capability in understanding both natural language and programming language, we endeavor to harness LLMs to represent diversely expressed text as well-structured code and select the best matching answer from multiple candidates through programming. We evaluate our QAaP framework on several time-sensitive question answering datasets and achieve decent improvement, up to 14.5% over strong baselines.
Human conversations contain natural and reasonable topic shifts, reflected as the concept flows across utterances. Previous researches prove that explicitly modeling concept flows with a large commonsense knowledge graph effectively improves response quality. However, we argue that there exists a gap between the knowledge graph and the conversation. The knowledge graph has limited commonsense knowledge and ignores the characteristics of natural conversations. Thus, many concepts and relations in conversations are not included. To bridge this gap, we propose to enhance dialogue generation with conversational concept flows. Specifically, we extract abundant concepts and relations from natural conversations and build a new conversation-aware knowledge graph. In addition, we design a novel relation-aware graph encoder to capture the concept flows guided by the knowledge graph. Experimental results on the large-scale Reddit conversation dataset indicate that our method performs better than strong baselines, andfurther analysis verifies the effectiveness of each component. All our code and data will be publicly available after acceptance.
Hot news is one of the most popular topics in daily conversations. However, news grounded conversation has long been stymied by the lack of well-designed task definition and scarce data. In this paper, we propose a novel task, Proactive News Grounded Conversation, in which a dialogue system can proactively lead the conversation based on some key topics of the news. In addition, both information-seeking and chit-chat scenarios are included realistically, where the user may ask a series of questions about the news details or express their opinions and be eager to chat. To further develop this novel task, we collect a human-to-human Chinese dialogue dataset NewsDialogues, which includes 1K conversations with a total of 14.6K utterances and detailed annotations for target topics and knowledge spans. Furthermore, we propose a method named Predict-Generate-Rank, consisting of a generator for grounded knowledge prediction and response generation, and a ranker for the ranking of multiple responses to alleviate the exposure bias. We conduct comprehensive experiments to demonstrate the effectiveness of the proposed method and further present several key findings and challenges to prompt future research.
In empathetic conversations, humans express their empathy to others with empathetic intents. However, most existing empathetic conversational methods suffer from a lack of empathetic intents, which leads to monotonous empathy. To address the bias of the empathetic intents distribution between empathetic dialogue models and humans, we propose a novel model to generate empathetic responses with human-consistent empathetic intents, EmpHi for short. Precisely, EmpHi learns the distribution of potential empathetic intents with a discrete latent variable, then combines both implicit and explicit intent representation to generate responses with various empathetic intents. Experiments show that EmpHi outperforms state-of-the-art models in terms of empathy, relevance, and diversity on both automatic and human evaluation. Moreover, the case studies demonstrate the high interpretability and outstanding performance of our model.
This paper presents IIGroup’s submission to the WMT22 Word-Level AutoCompletion(WLAC) Shared Task in four language directions. We propose to use a Generate-then-Rerank framework to solve this task. More specifically, the generator is used to generate candidate words and recall as many positive candidates as possible. To facilitate the training process of the generator, we propose a span-level mask prediction task. Once we get the candidate words, we take the top-K candidates and feed them into the reranker. The reranker is used to select the most confident candidate. The experimental results in four language directions demonstrate the effectiveness of our systems. Our systems achieve competitive performance ranking 1st in English to Chinese subtask and 2nd in Chinese to English subtask.