Stefan Winkler


2024

pdf bib
A Comprehensive Survey of Sentence Representations: From the BERT Epoch to the CHATGPT Era and Beyond
Abhinav Ramesh Kashyap | Thanh-Tung Nguyen | Viktor Schlegel | Stefan Winkler | See-Kiong Ng | Soujanya Poria
Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics (Volume 1: Long Papers)

Sentence representations are a critical component in NLP applications such as retrieval, question answering, and text classification. They capture the meaning of a sentence, enabling machines to understand and reason over human language. In recent years, significant progress has been made in developing methods for learning sentence representations, including unsupervised, supervised, and transfer learning approaches. However there is no literature review on sentence representations till now. In this paper, we provide an overview of the different methods for sentence representation learning, focusing mostly on deep learning models. We provide a systematic organization of the literature, highlighting the key contributions and challenges in this area. Overall, our review highlights the importance of this area in natural language processing, the progress made in sentence representation learning, and the challenges that remain. We conclude with directions for future research, suggesting potential avenues for improving the quality and efficiency of sentence representations.

pdf bib
Seemingly Plausible Distractors in Multi-Hop Reasoning: Are Large Language Models Attentive Readers?
Neeladri Bhuiya | Viktor Schlegel | Stefan Winkler
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

State-of-the-art Large Language Models (LLMs) are accredited with an increasing number of different capabilities, ranging from reading comprehension over advanced mathematical and reasoning skills to possessing scientific knowledge. In this paper we focus on multi-hop reasoning—the ability to identify and integrate information from multiple textual sources.Given the concerns with the presence of simplifying cues in existing multi-hop reasoning benchmarks, which allow models to circumvent the reasoning requirement, we set out to investigate whether LLMs are prone to exploiting such simplifying cues. We find evidence that they indeed circumvent the requirement to perform multi-hop reasoning, but they do so in more subtle ways than what was reported about their fine-tuned pre-trained language model (PLM) predecessors. We propose a challenging multi-hop reasoning benchmark by generating seemingly plausible multi-hop reasoning chains that ultimately lead to incorrect answers. We evaluate multiple open and proprietary state-of-the-art LLMs and show that their multi-hop reasoning performance is affected, as indicated by up to 45% relative decrease in F1 score when presented with such seemingly plausible alternatives. We also find that—while LLMs tend to ignore misleading lexical cues—misleading reasoning paths indeed present a significant challenge. The code and data are made available at https://github.com/zawedcvg/Are-Large-Language-Models-Attentive-Readers

pdf bib
M-QALM: A Benchmark to Assess Clinical Reading Comprehension and Knowledge Recall in Large Language Models via Question Answering
Anand Subramanian | Viktor Schlegel | Abhinav Ramesh Kashyap | Thanh-Tung Nguyen | Vijay Prakash Dwivedi | Stefan Winkler
Findings of the Association for Computational Linguistics: ACL 2024

There is vivid research on adapting Large Language Models (LLMs) to perform a variety of tasks in high-stakes domains such as healthcare. Despite their popularity, there is a lack of understanding of the extent and contributing factors that allow LLMs to recall relevant knowledge and combine it with presented information in the clinical and biomedical domain: a fundamental pre-requisite for success on down-stream tasks.Addressing this gap, we use Multiple Choice and Abstractive Question Answering to conduct a large-scale empirical study on 22 datasets in three generalist and three specialist biomedical sub-domains. Our multifaceted analysis of the performance of 15 LLMs, further broken down by sub-domain, source of knowledge and model architecture, uncovers success factors such as instruction tuning that lead to improved recall and comprehension. We further show that while recently proposed domain-adapted models may lack adequate knowledge, directly fine-tuning on our collected medical knowledge datasets shows encouraging results, even generalising to unseen specialist sub-domains. We complement the quantitative results with a skill-oriented manual error analysis, which reveals a significant gap between the models’ capabilities to simply recall necessary knowledge and to integrate it with the presented context.To foster research and collaboration in this field we share M-QALM, our resources, standardised methodology, and evaluation results, with the research community to facilitate further advancements in clinical knowledge representation learning within language models.

2023

pdf bib
Team:PULSAR at ProbSum 2023:PULSAR: Pre-training with Extracted Healthcare Terms for Summarising Patients’ Problems and Data Augmentation with Black-box Large Language Models
Hao Li | Yuping Wu | Viktor Schlegel | Riza Batista-Navarro | Thanh-Tung Nguyen | Abhinav Ramesh Kashyap | Xiao-Jun Zeng | Daniel Beck | Stefan Winkler | Goran Nenadic
The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks

Medical progress notes play a crucial role in documenting a patient’s hospital journey, including his or her condition, treatment plan, and any updates for healthcare providers. Automatic summarisation of a patient’s problems in the form of a “problem list” can aid stakeholders in understanding a patient’s condition, reducing workload and cognitive bias. BioNLP 2023 Shared Task 1A focusses on generating a list of diagnoses and problems from the provider’s progress notes during hospitalisation. In this paper, we introduce our proposed approach to this task, which integrates two complementary components. One component employs large language models (LLMs) for data augmentation; the other is an abstractive summarisation LLM with a novel pre-training objective for generating the patients’ problems summarised as a list. Our approach was ranked second among all submissions to the shared task. The performance of our model on the development and test datasets shows that our approach is more robust on unknown data, with an improvement of up to 3.1 points over the same size of the larger model.

pdf bib
A Two-Stage Decoder for Efficient ICD Coding
Thanh-Tung Nguyen | Viktor Schlegel | Abhinav Ramesh Kashyap | Stefan Winkler
Findings of the Association for Computational Linguistics: ACL 2023

Clinical notes in healthcare facilities are tagged with the International Classification of Diseases (ICD) code; a list of classification codes for medical diagnoses and procedures. ICD coding is a challenging multilabel text classification problem due to noisy clinical document inputs and long-tailed label distribution. Recent automated ICD coding efforts improve performance by encoding medical notes and codes with additional data and knowledge bases. However, most of them do not reflect how human coders generate the code: first, the coders select general code categories and then look for specific subcategories that are relevant to a patient’s condition. Inspired by this, we propose a two-stage decoding mechanism to predict ICD codes. Our model uses the hierarchical properties of the codes to split the prediction into two steps: At first, we predict the parent code and then predict the child code based on the previous prediction. Experiments on the public MIMIC-III data set have shown that our model performs well in single-model settings without external data or knowledge.