Tao Xie


2024

pdf bib
VulLibGen: Generating Names of Vulnerability-Affected Packages via a Large Language Model
Tianyu Chen | Lin Li | ZhuLiuchuan ZhuLiuchuan | Zongyang Li | Xueqing Liu | Guangtai Liang | Qianxiang Wang | Tao Xie
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Security practitioners maintain vulnerability reports (e.g., GitHub Advisory) to help developers mitigate security risks. An important task for these databases is automatically extracting structured information mentioned in the report, e.g., the affected software packages, to accelerate the defense of the vulnerability ecosystem.However, it is challenging for existing work on affected package identification to achieve high precision. One reason is that all existing work focuses on relatively smaller models, thus they cannot harness the knowledge and semantic capabilities of large language models.To address this limitation, we propose VulLibGen, the first method to use LLM for affected package identification. In contrast to existing work, VulLibGen proposes the novel idea to directly generate the affected package. To improve the precision, VulLibGen employs supervised fine-tuning (SFT), retrieval augmented generation (RAG) and a local search algorithm. The local search algorithm is a novel post-processing algorithm we introduce for reducing the hallucination of the generated packages. Our evaluation results show that VulLibGen has an average precision of 0.806 for identifying vulnerable packages in the four most popular ecosystems in GitHub Advisory (Java, JS, Python, Go) while the best average precision in previous work is 0.721. Additionally, VulLibGen has high value to security practice: we submitted 60 <vulnerability, affected package> pairs to GitHub Advisory (covers four ecosystems) and 34 of them have been accepted and merged.

pdf bib
Decomposition for Enhancing Attention: Improving LLM-based Text-to-SQL through Workflow Paradigm
Yuanzhen Xie | Xinzhou Jin | Tao Xie | Matrixmxlin Matrixmxlin | Liang Chen | Chenyun Yu | Cheng Lei | Chengxiang Zhuo | Bo Hu | Zang Li
Findings of the Association for Computational Linguistics: ACL 2024

In-context learning of large-language models (LLMs) has achieved remarkable success in the field of natural language processing, while extensive case studies reveal that the single-step chain-of-thought prompting approach faces challenges such as attention diffusion and inadequate performance in complex tasks like text-to-SQL. To improve the contextual learning capabilities of LLMs in text-to-SQL, a workflow paradigm method is proposed, aiming to enhance the attention and problem-solving scope of LLMs through decomposition. Specifically, the information determination module for eliminating redundant information and the brand-new prompt structure based on problem classification greatly enhance the model’s attention. Additionally, the inclusion of self-correction and active learning modules greatly expands the problem-solving scope of LLMs, hence improving the upper limit of LLM-based approaches. Extensive experiments conducted on three datasets demonstrate that our approach outperforms other methods by a significant margin. About 2-3 percentage point improvements compared to the existing baseline on the Spider Dev, Spider-Realistic, and Bird Dev datasets and new SOTA results on the Spider Test dataset are achieved. Our code is available on GitHub: https://github.com/FlyingFeather/DEA-SQL.

2022

pdf bib
Exploring the Secrets Behind the Learning Difficulty of Meaning Representations for Semantic Parsing
Zhenwen Li | Jiaqi Guo | Qian Liu | Jian-Guang Lou | Tao Xie
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Previous research has shown that the design of Meaning Representation (MR) greatly influences the final model performance of a neural semantic parser. Therefore, designing a good MR is a long-term goal for semantic parsing. However, it is still an art as there is no quantitative indicator that can tell us which MR among a set of candidates may have the best final model performance. In practice, in order toselect an MR design, researchers often have to go through the whole training-testing process for all design candidates, and the process often costs a lot. In this paper, we propose a data-aware metric called ISS (denoting incremental structural stability) of MRs, and demonstrate that ISS is highly correlated with the final performance. The finding shows that ISS can be used as an indicator for MR design to avoid the costly training-testing process.

2020

pdf bib
Benchmarking Meaning Representations in Neural Semantic Parsing
Jiaqi Guo | Qian Liu | Jian-Guang Lou | Zhenwen Li | Xueqing Liu | Tao Xie | Ting Liu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Meaning representation is an important component of semantic parsing. Although researchers have designed a lot of meaning representations, recent work focuses on only a few of them. Thus, the impact of meaning representation on semantic parsing is less understood. Furthermore, existing work’s performance is often not comprehensively evaluated due to the lack of readily-available execution engines. Upon identifying these gaps, we propose , a new unified benchmark on meaning representations, by integrating existing semantic parsing datasets, completing the missing logical forms, and implementing the missing execution engines. The resulting unified benchmark contains the complete enumeration of logical forms and execution engines over three datasets × four meaning representations. A thorough experimental study on Unimer reveals that neural semantic parsing approaches exhibit notably different performance when they are trained to generate different meaning representations. Also, program alias and grammar rules heavily impact the performance of different meaning representations. Our benchmark, execution engines and implementation can be found on: https://github.com/JasperGuo/Unimer.

2018

pdf bib
SemRegex: A Semantics-Based Approach for Generating Regular Expressions from Natural Language Specifications
Zexuan Zhong | Jiaqi Guo | Wei Yang | Jian Peng | Tao Xie | Jian-Guang Lou | Ting Liu | Dongmei Zhang
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

Recent research proposes syntax-based approaches to address the problem of generating programs from natural language specifications. These approaches typically train a sequence-to-sequence learning model using a syntax-based objective: maximum likelihood estimation (MLE). Such syntax-based approaches do not effectively address the goal of generating semantically correct programs, because these approaches fail to handle Program Aliasing, i.e., semantically equivalent programs may have many syntactically different forms. To address this issue, in this paper, we propose a semantics-based approach named SemRegex. SemRegex provides solutions for a subtask of the program-synthesis problem: generating regular expressions from natural language. Different from the existing syntax-based approaches, SemRegex trains the model by maximizing the expected semantic correctness of the generated regular expressions. The semantic correctness is measured using the DFA-equivalence oracle, random test cases, and distinguishing test cases. The experiments on three public datasets demonstrate the superiority of SemRegex over the existing state-of-the-art approaches.