Minimal pairs are a well-established approach to evaluating the grammatical knowledge of language models. However, existing resources for minimal pairs address a limited number of languages and lack diversity of language-specific grammatical phenomena. This paper introduces the Russian Benchmark of Linguistic Minimal Pairs (RuBLiMP), which includes 45k pairs of sentences that differ in grammaticality and isolate a morphological, syntactic, or semantic phenomenon. In contrast to existing benchmarks of linguistic minimal pairs, RuBLiMP is created by applying linguistic perturbations to automatically annotated sentences from open text corpora and decontaminating test data. We describe the data collection protocol and present the results of evaluating 25 language models in various scenarios. We find that the widely used LMs for Russian are sensitive to morphological and agreement-oriented contrasts, but fall behind humans on phenomena requiring the understanding of structural relations, negation, transitivity, and tense. RuBLiMP, the codebase, and other materials are publicly available.
The ease of access to large language models (LLMs) has enabled a widespread of machine-generated texts, and now it is often hard to tell whether a piece of text was human-written or machine-generated. This raises concerns about potential misuse, particularly within educational and academic domains. Thus, it is important to develop practical systems that can automate the process. Here, we present one such system, LLM-DetectAIve, designed for fine-grained detection. Unlike most previous work on machine-generated text detection, which focused on binary classification, LLM-DetectAIve supports four categories: (i) human-written, (ii) machine-generated, (iii) machine-written, then machine-humanized, and (iv) human-written, then machine-polished. Category (iii) aims to detect attempts to obfuscate the fact that a text was machine-generated, while category (iv) looks for cases where the LLM was used to polish a human-written text, which is typically acceptable in academic writing, but not in education. Our experiments show that LLM-DetectAIve can effectively identify the above four categories, which makes it a potentially useful tool in education, academia, and other domains.LLM-DetectAIve is publicly accessible at https://github.com/mbzuai-nlp/LLM-DetectAIve. The video describing our system is available at https://youtu.be/E8eT_bE7k8c.
Transformer language models (LMs) are fundamental to NLP research methodologies and applications in various languages. However, developing such models specifically for the Russian language has received little attention. This paper introduces a collection of 13 Russian Transformer LMs, which spans encoder (ruBERT, ruRoBERTa, ruELECTRA), decoder (ruGPT-3), and encoder-decoder (ruT5, FRED-T5) architectures. We provide a report on the model architecture design and pretraining, and the results of evaluating their generalization abilities on Russian language understanding and generation datasets and benchmarks. By pretraining and releasing these specialized Transformer LMs, we aim to broaden the scope of the NLP research directions and enable the development of industrial solutions for the Russian language.
This paper presents Papilusion, an AI-generated scientific text detector developed within the DAGPap24 shared task on detecting automatically generated scientific papers. We propose an ensemble-based approach and conduct ablation studies to analyze the effect of the detector configurations on the performance. Papilusion is ranked 6th on the leaderboard, and we improve our performance after the competition ended, achieving 99.46 (+9.63) of the F1-score on the official test set.
This paper describes AIpom, a system designed to detect a boundary between human-written and machine-generated text (SemEval-2024 Task 8, Subtask C: Human-Machine Mixed Text Detection). We propose a two-stage pipeline combining predictions from an instruction-tuned decoder-only model and encoder-only sequence taggers. AIpom is ranked second on the leaderboard while achieving a Mean Absolute Error of 15.94. Ablation studies confirm the benefits of pipelining encoder and decoder models, particularly in terms of improved performance.
This paper introduces mGPT, a multilingual variant of GPT-3, pretrained on 61 languages from 25 linguistically diverse language families using Wikipedia and the C4 Corpus. We detail the design and pretraining procedure. The models undergo an intrinsic and extrinsic evaluation: language modeling in all languages, downstream evaluation on cross-lingual NLU datasets and benchmarks in 33 languages, and world knowledge probing in 23 languages. The in-context learning abilities are on par with the contemporaneous language models while covering a larger number of languages, including underrepresented and low-resource languages of the Commonwealth of Independent States and the indigenous peoples in Russia. The source code and the language models are publicly available under the MIT license.
The development of state-of-the-art systems in different applied areas of machine learning (ML) is driven by benchmarks, which have shaped the paradigm of evaluating generalisation capabilities from multiple perspectives. Although the paradigm is shifting towards more fine-grained evaluation across diverse tasks, the delicate question of how to aggregate the performances has received particular interest in the community. In general, benchmarks follow the unspoken utilitarian principles, where the systems are ranked based on their mean average score over task-specific metrics. Such aggregation procedure has been viewed as a sub-optimal evaluation protocol, which may have created the illusion of progress. This paper proposes Vote’n’Rank, a framework for ranking systems in multi-task benchmarks under the principles of the social choice theory. We demonstrate that our approach can be efficiently utilised to draw new insights on benchmarking in several ML sub-fields and identify the best-performing systems in research and development case studies. The Vote’n’Rank’s procedures are more robust than the mean average while being able to handle missing performance scores and determine conditions under which the system becomes the winner.
Linguistic acceptability (LA) attracts the attention of the research community due to its many uses, such as testing the grammatical knowledge of language models and filtering implausible texts with acceptability classifiers.However, the application scope of LA in languages other than English is limited due to the lack of high-quality resources.To this end, we introduce the Russian Corpus of Linguistic Acceptability (RuCoLA), built from the ground up under the well-established binary LA approach. RuCoLA consists of 9.8k in-domain sentences from linguistic publications and 3.6k out-of-domain sentences produced by generative models. The out-of-domain set is created to facilitate the practical use of acceptability for improving language generation.Our paper describes the data collection protocol and presents a fine-grained analysis of acceptability classification experiments with a range of baseline approaches.In particular, we demonstrate that the most widely used language models still fall behind humans by a large margin, especially when detecting morphological and semantic errors. We release RuCoLA, the code of experiments, and a public leaderboard to assess the linguistic competence of language models for Russian.
The role of the attention mechanism in encoding linguistic knowledge has received special interest in NLP. However, the ability of the attention heads to judge the grammatical acceptability of a sentence has been underexplored. This paper approaches the paradigm of acceptability judgments with topological data analysis (TDA), showing that the geometric properties of the attention graph can be efficiently exploited for two standard practices in linguistics: binary judgments and linguistic minimal pairs. Topological features enhance the BERT-based acceptability classifier scores by 8%-24% on CoLA in three languages (English, Italian, and Swedish). By revealing the topological discrepancy between attention maps of minimal pairs, we achieve the human-level performance on the BLiMP benchmark, outperforming nine statistical and Transformer LM baselines. At the same time, TDA provides the foundation for analyzing the linguistic functions of attention heads and interpreting the correspondence between the graph features and grammatical phenomena. We publicly release the code and other materials used in the experiments.
Recent advances in zero-shot and few-shot learning have shown promise for a scope of research and practical purposes. However, this fast-growing area lacks standardized evaluation suites for non-English languages, hindering progress outside the Anglo-centric paradigm. To address this line of research, we propose TAPE (Text Attack and Perturbation Evaluation), a novel benchmark that includes six more complex NLU tasks for Russian, covering multi-hop reasoning, ethical concepts, logic and commonsense knowledge. The TAPE’s design focuses on systematic zero-shot and few-shot NLU evaluation: (i) linguistic-oriented adversarial attacks and perturbations for analyzing robustness, and (ii) subpopulations for nuanced interpretation. The detailed analysis of testing the autoregressive baselines indicates that simple spelling-based perturbations affect the performance the most, while paraphrasing the input has a more negligible effect. At the same time, the results demonstrate a significant gap between the neural and human baselines for most tasks. We publicly release TAPE (https://tape-benchmark.com) to foster research on robust LMs that can generalize to new tasks when little to no supervision is available.
The success of pre-trained transformer language models has brought a great deal of interest on how these models work, and what they learn about language. However, prior research in the field is mainly devoted to English, and little is known regarding other languages. To this end, we introduce RuSentEval, an enhanced set of 14 probing tasks for Russian, including ones that have not been explored yet. We apply a combination of complementary probing methods to explore the distribution of various linguistic properties in five multilingual transformers for two typologically contrasting languages – Russian and English. Our results provide intriguing findings that contradict the common understanding of how linguistic knowledge is represented, and demonstrate that some properties are learned in a similar manner despite the language differences.
The impressive capabilities of recent generative models to create texts that are challenging to distinguish from the human-written ones can be misused for generating fake news, product reviews, and even abusive content. Despite the prominent performance of existing methods for artificial text detection, they still lack interpretability and robustness towards unseen models. To this end, we propose three novel types of interpretable topological features for this task based on Topological Data Analysis (TDA) which is currently understudied in the field of NLP. We empirically show that the features derived from the BERT model outperform count- and neural-based baselines up to 10% on three common datasets, and tend to be the most robust towards unseen GPT-style generation models as opposed to existing methods. The probing analysis of the features reveals their sensitivity to the surface and syntactic properties. The results demonstrate that TDA is a promising line with respect to NLP tasks, specifically the ones that incorporate surface and structural information.
Recent research has adopted a new experimental field centered around the concept of text perturbations which has revealed that shuffled word order has little to no impact on the downstream performance of Transformer-based language models across many NLP tasks. These findings contradict the common understanding of how the models encode hierarchical and structural information and even question if the word order is modeled with position embeddings. To this end, this paper proposes nine probing datasets organized by the type of controllable text perturbation for three Indo-European languages with a varying degree of word order flexibility: English, Swedish and Russian. Based on the probing analysis of the M-BERT and M-BART models, we report that the syntactic sensitivity depends on the language and model pre-training objectives. We also find that the sensitivity grows across layers together with the increase of the perturbation granularity. Last but not least, we show that the models barely use the positional information to induce syntactic trees from their intermediate self-attention and contextualized representations.
The outstanding performance of transformer-based language models on a great variety of NLP and NLU tasks has stimulated interest in exploration of their inner workings. Recent research has been primarily focused on higher-level and complex linguistic phenomena such as syntax, semantics, world knowledge and common-sense. The majority of the studies is anglocentric, and little remains known regarding other languages, specifically their morphosyntactic properties. To this end, our work presents Morph Call, a suite of 46 probing tasks for four Indo-European languages of different morphology: Russian, French, English and German. We propose a new type of probing tasks based on detection of guided sentence perturbations. We use a combination of neuron-, layer- and representation-level introspection techniques to analyze the morphosyntactic content of four multilingual transformers, including their understudied distilled versions. Besides, we examine how fine-tuning on POS-tagging task affects the probing performance.
The paper introduces two Russian machine reading comprehension (MRC) datasets, called MuSeRC and RuCoS, which require reasoning over multiple sentences and commonsense knowledge to infer the answer. The former follows the design of MultiRC, while the latter is a counterpart of the ReCoRD dataset. The datasets are included in RussianSuperGLUE, the Russian general language understanding benchmark. We provide a comparative analysis and demonstrate that the proposed tasks are relatively more complex as compared to the original ones for English. Besides, performance results of human solvers and BERT-based models show that MuSeRC and RuCoS represent a challenge for recent advanced neural models. We thus hope to facilitate research in the field of MRC for Russian and prompt the study of multi-hop reasoning in a cross-lingual scenario.
In this paper, we introduce an advanced Russian general language understanding evaluation benchmark – Russian SuperGLUE. Recent advances in the field of universal language models and transformers require the development of a methodology for their broad diagnostics and testing for general intellectual skills - detection of natural language inference, commonsense reasoning, ability to perform simple logical operations regardless of text subject or lexicon. For the first time, a benchmark of nine tasks, collected and organized analogically to the SuperGLUE methodology, was developed from scratch for the Russian language. We also provide baselines, human level evaluation, open-source framework for evaluating models, and an overall leaderboard of transformer models for the Russian language. Besides, we present the first results of comparing multilingual models in the translated diagnostic test set and offer the first steps to further expanding or assessing State-of-the-art models independently of language.
Artificial General Intelligence (AGI) is showing growing performance in numerous applications - beating human performance in Chess and Go, using knowledge bases and text sources to answer questions (SQuAD) and even pass human examination (Aristo project). In this paper, we describe the results of AI Journey, a competition of AI-systems aimed to improve AI performance on knowledge bases, reasoning and text generation. Competing systems pass the final native language exam (in Russian), including versatile grammar tasks (test and open questions) and an essay, achieving a high score of 69%, with 68% being an average human result. During the competition, a baseline for the task and essay parts was proposed, and 80+ systems were submitted, showing different approaches to task understanding and reasoning. All the data and solutions can be found on github https://github.com/sberbank-ai/combined_solution_aij2019
The paper describes initial experiments in data-driven cross-lingual morphological analysis of open-category words using a combination of unsupervised morpheme segmentation, annotation projection and an LSTM encoder-decoder model with attention. Our algorithm provides lemmatisation and morphological analysis generation for previously unseen low-resource language surface forms with only annotated data on the related languages given. Despite the inherently lossy annotation projection, we achieved the best lemmatisation F1-score in the VarDial 2019 Shared Task on Cross-Lingual Morphological Analysis for both Karachay-Balkar (Turkic languages, agglutinative morphology) and Sardinian (Romance languages, fusional morphology).