The distractor generation task focuses on generating incorrect but plausible options for objective questions such as fill-in-the-blank and multiple-choice questions. This task is widely utilized in educational settings across various domains and subjects. The effectiveness of these questions in assessments relies on the quality of the distractors, as they challenge examinees to select the correct answer from a set of misleading options. The evolution of artificial intelligence (AI) has transitioned the task from traditional methods to the use of neural networks and pre-trained language models. This shift has established new benchmarks and expanded the use of advanced deep learning methods in generating distractors. This survey explores distractor generation tasks, datasets, methods, and current evaluation metrics for English objective questions, covering both text-based and multi-modal domains. It also evaluates existing AI models and benchmarks and discusses potential future research directions.
Contrastive learning has demonstrated promising results in unsupervised abstractive summarization. However, existing methods rely on manually crafted negative examples, demanding substantial human effort and domain knowledge. Moreover, these human-generated negative examples may be poor in quality and lack adaptability during model training. To address these issues, we propose a novel approach that learns trainable negative examples for contrastive learning in unsupervised abstractive summarization, which eliminates the need for manual negative example design. Our framework introduces an adversarial optimization process between a negative example network and a representation network (including the summarizer and encoders). The negative example network is trained to synthesize hard negative examples that are close to the positive examples, driving the representation network to improve the quality of the generated summaries. We evaluate our method on two benchmark datasets for unsupervised abstractive summarization and observe significant performance improvements compared to strong baseline models.
Multimodal summarization with multimodal output (MSMO) has attracted increasing research interests recently as multimodal summary could provide more comprehensive information compared to text-only summary, effectively improving the user experience and satisfaction. As one of the most fundamental components for the development of MSMO, evaluation is an emerging yet underexplored research topic. In this paper, we fill this gap and propose a research framework that studies three research questions of MSMO evaluation: (1) Automatic Evaluation: We propose a novel metric mLLM-EVAL, which utilizes multimodal Large Language Model for MSMO EVALuation. (2) Meta-Evaluation: We create a meta-evaluation benchmark dataset by collecting human-annotated scores for multimodal summaries. With our benchmark, we conduct meta-evaluation analysis to assess the quality of different evaluation metrics and show the effectiveness of our proposed mLLM-EVAL. (3) Human Evaluation: To provide more objective and unbiased human annotations for meta-evaluation, we hypothesize and verify three types of cognitive biases in human evaluation. We also incorporate our findings into the human annotation process in the meta-evaluation benchmark. Overall, our research framework provides an evaluation metric, a meta-evaluation benchmark dataset annotated by humans and an analysis of cognitive biases in human evaluation, which we believe would serve as a valuable and comprehensive resource for the MSMO research community.
Although deep neural networks have achieved state-of-the-art performance in various machine learning tasks, adversarial examples, constructed by adding small non-random perturbations to correctly classified inputs, successfully fool highly expressive deep classifiers into incorrect predictions. Approaches to adversarial attacks in natural language tasks have boomed in the last five years using character-level, word-level, phrase-level, or sentence-level textual perturbations. While there is some work in NLP on defending against such attacks through proactive methods, like adversarial training, there is to our knowledge no effective general reactive approaches to defence via detection of textual adversarial examples such as is found in the image processing literature. In this paper, we propose two new reactive methods for NLP to fill this gap, which unlike the few limited application baselines from NLP are based entirely on distribution characteristics of learned representations”:” we adapt one from the image processing literature (Local Intrinsic Dimensionality (LID)), and propose a novel one (MultiDistance Representation Ensemble Method (MDRE)). Adapted LID and MDRE obtain state-of-the-art results on character-level, word-level, and phrase-level attacks on the IMDB dataset as well as on the later two with respect to the MultiNLI dataset. For future research, we publish our code .
Most of the state-of-the-art methods for abstractive text summarization are under supervised learning settings, while heavily relying on high-quality and large-scale parallel corpora. In this paper, we remove the need for reference summaries and present an unsupervised learning method SCR (Summarize, Contrast and Review) for abstractive summarization, which leverages contrastive learning and is the first work to apply contrastive learning for unsupervised abstractive summarization. Particularly, we use the true source documents as positive source document examples, and strategically generated fake source documents as negative source document examples to train the model to generate good summaries. Furthermore, we consider and improve the writing quality of the generated summaries by guiding them to be similar to human-written texts. The promising results on extensive experiments show that SCR outperforms other unsupervised abstractive summarization baselines, which demonstrates its effectiveness.
Multi-document summarization (MDS) is a process of generating an informative and concise summary from multiple topic-related documents. Many studies have analyzed the quality of MDS dataset or models, however no work has been done from the perspective of topic preservation. In this work, we fill the gap by performing an empirical analysis on two MDS datasets and study topic preservation on generated summaries from 8 MDS models. Our key findings include i) Multi-News dataset has better gold summaries compared to Multi-XScience in terms of its topic distribution consistency and ii) Extractive approaches perform better than abstractive approaches in preserving topic information from source documents. We hope our findings could help develop a summarization model that can generate topic-focused summary and also give inspiration to researchers in creating dataset for such challenging task.
Aspect extraction is a widely researched field of natural language processing in which aspects are identified from the text as a means for information. For example, in aspect-based sentiment analysis (ABSA), aspects need to be first identified. Previous studies have introduced various approaches to increasing accuracy, although leaving room for further improvement. In a practical situation where the examined dataset is lacking labels, to fine-tune the process a novel unsupervised approach is proposed, combining a lexical rule-based approach with coreference resolution. The model increases accuracy through the recognition and removal of coreferring aspects. Experimental evaluations are performed on two benchmark datasets, demonstrating the greater performance of our approach to extracting coherent aspects through outperforming the baseline approaches.
Aspect-Based Sentiment Analysis (ABSA)has gained much attention in recent years. It is the task of identifying fine-grained opinionpolarity towards a specific aspect associated with a given target. However, there is a lack of benchmarking platform to provide a unified environment under consistent evaluation criteria for ABSA, resulting in the difficulties for fair comparisons. In this work, we address this issue and define a benchmark, ABSA-Bench, by unifying the evaluation protocols and the pre-processed publicly available datasets in a Web-based platform. ABSA-Bench provides two means of evaluations for participants to submit their predictions or models for online evaluation. Performances are ranked in the leader board and a discussion forum is supported to serve as a collaborative platform for academics and researchers to discuss queries.