Comparative Opinion Quintuple Extraction (COQE) aims to extract all comparative sentiment quintuples from product review text. Each quintuple comprises five elements: subject, object, aspect, opinion and preference. With the rise of Large Language Models (LLMs), existing work primarily focuses on enhancing the performance of COQE task through data augmentation, supervised fine-tuning and instruction tuning. Instead of the above pre-modeling and in-modeling design techniques, we focus on innovation in the post-processing. We introduce a model-unaware adaptive chain-of-feedback (COF) method from the perspective of inference feedback and extraction revision. This method comprises three core modules: dynamic example selection, self-critique and self-revision. By integrating LLMs, COF enables dynamic iterative self-optimization, making it applicable across different baselines. To validate the effectiveness of our approach, we utilize the outputs of two distinct baselines as inputs for COF: frozen parameters few-shot learning and the SOTA supervised fine-tuned model. We evaluate our approach on three benchmarks: Camera, Car and Ele. Experimental results show that, compared to the few-shot learning method, our approach achieves F1 score improvements of 3.51%, 2.65% and 5.28% for exact matching on the respective dataset. Even more impressively, our method further boosts performance, surpassing the current SOTA results, with additional gains of 0.76%, 6.54%, and 2.36% across the three datasets.
Current self-training methods such as standard self-training, co-training, tri-training, and others often focus on improving model performance on a single task, utilizing differences in input features, model architectures, and training processes. However, many tasks in natural language processing are about different but related aspects of language, and models trained for one task can be great teachers for other related tasks. In this work, we propose friend-training, a cross-task self-training framework, where models trained to do different tasks are used in an iterative training, pseudo-labeling, and retraining process to help each other for better selection of pseudo-labels. With two dialogue understanding tasks, conversational semantic role labeling and dialogue rewriting, chosen for a case study, we show that the models trained with the friend-training framework achieve the best performance compared to strong baselines.
Large Language Models (LLMs) have demonstrated incredible capabilities in understanding, generating, and manipulating languages. Through human-model interactions, LLMs can automatically understand human-issued instructions and output the expected contents, which can significantly increase working efficiency. In various types of real-world demands, editing-oriented tasks account for a considerable proportion, which involves an interactive process that entails the continuous refinement of existing texts to meet specific criteria. Due to the need for multi-round human-model interaction and the generation of complicated editing tasks, there is an emergent need for efficient general editing models. In this paper, we propose General SParse Efficient Editing MoDel (G-SPEED), which can fulfill diverse editing requirements through a single model while maintaining low computational costs. Specifically, we first propose a novel unsupervised text editing data clustering algorithm to deal with the data scarcity problem. Subsequently, we introduce a sparse editing model architecture to mitigate the inherently limited learning capabilities of small language models. The experimental outcomes indicate that G-SPEED, with its 508M parameters, can surpass LLMs equipped with 175B parameters. Our code and model checkpoints are available at https://github.com/Banner-Z/G-SPEED.
In logographic languages like Chinese, word meanings are constructed using specific character formations, which can help to disambiguate word senses and are beneficial for sentiment classification. However, such knowledge is rarely explored in previous sentiment analysis methods. In this paper, we focus on exploring the logographic information for aspect-based sentiment classification in Chinese text. Specifically, we employ a logographic image to capture an internal morphological structure from the character sequence. The logographic image is also used to learn the external relations among context and aspect words. Furthermore, we propose a multimodal language model to explicitly incorporate a logographic image with review text for aspect-based sentiment classification in Chinese. Experimental results show that our method brings substantial performance improvement over strong baselines. The results also indicate that the logographic image is very important for exploring the internal structure and external relations from the character sequence.
In recent years, distantly-supervised relation extraction has achieved a certain success by using deep neural networks. Distant Supervision (DS) can automatically generate large-scale annotated data by aligning entity pairs from Knowledge Bases (KB) to sentences. However, these DS-generated datasets inevitably have wrong labels that result in incorrect evaluation scores during testing, which may mislead the researchers. To solve this problem, we build a new dataset NYTH, where we use the DS-generated data as training data and hire annotators to label test data. Compared with the previous datasets, NYT-H has a much larger test set and then we can perform more accurate and consistent evaluation. Finally, we present the experimental results of several widely used systems on NYT-H. The experimental results show that the ranking lists of the comparison systems on the DS-labelled test data and human-annotated test data are different. This indicates that our human-annotated data is necessary for evaluation of distantly-supervised relation extraction.
There have been a recent line of works to automatically predict the emotions of posts in social media. Existing approaches consider the posts individually and predict their emotions independently. Different from previous researches, we explore the dependence among relevant posts via the authors’ backgrounds, since the authors with similar backgrounds, e.g., gender, location, tend to express similar emotions. However, such personal attributes are not easy to obtain in most social media websites, and it is hard to capture attributes-aware words to connect similar people. Accordingly, we propose a Neural Personal Discrimination (NPD) approach to address above challenges by determining personal attributes from posts, and connecting relevant posts with similar attributes to jointly learn their emotions. In particular, we employ adversarial discriminators to determine the personal attributes, with attention mechanisms to aggregate attributes-aware words. In this way, social correlationship among different posts can be better addressed. Experimental results show the usefulness of personal attributes, and the effectiveness of our proposed NPD approach in capturing such personal attributes with significant gains over the state-of-the-art models.