2024
pdf
bib
abs
E-EVAL: A Comprehensive Chinese K-12 Education Evaluation Benchmark for Large Language Models
Jinchang Hou
|
Chang Ao
|
Haihong Wu
|
Xiangtao Kong
|
Zhigang Zheng
|
Daijia Tang
|
Chengming Li
|
Xiping Hu
|
Ruifeng Xu
|
Shiwen Ni
|
Min Yang
Findings of the Association for Computational Linguistics: ACL 2024
The rapid development of Large Language Models (LLMs) has led to their increasing utilization in Chinese K-12 education. Despite the growing integration of LLMs and education, the absence of a dedicated benchmark for evaluating LLMs within this domain presents a pressing concern. Consequently, there is an urgent need for a comprehensive natural language processing benchmark to precisely assess the capabilities of various LLMs in Chinese K-12 education. In response, we introduce E-EVAL, the first comprehensive evaluation benchmark specifically tailored for Chinese K-12 education. E-EVAL comprises 4,351 multiple-choice questions spanning primary, middle, and high school levels, covering a diverse array of subjects. Through meticulous evaluation, we find that Chinese-dominant models often outperform English-dominant ones, with many exceeding GPT 4.0. However, most struggle with complex subjects like mathematics. Additionally, our analysis indicates that most Chinese-dominant LLMs do not achieve higher scores at the primary school level compared to the middle school level, highlighting the nuanced relationship between proficiency in higher-order and lower-order knowledge domains. Furthermore, experimental results highlight the effectiveness of the Chain of Thought (CoT) technique in scientific subjects and Few-shot prompting in liberal arts. Through E-EVAL, we aim to conduct a rigorous analysis delineating the strengths and limitations of LLMs in educational applications, thereby contributing significantly to the advancement of Chinese K-12 education and LLMs.
pdf
bib
abs
CPsyCoun: A Report-based Multi-turn Dialogue Reconstruction and Evaluation Framework for Chinese Psychological Counseling
Chenhao Zhang
|
Renhao Li
|
Minghuan Tan
|
Min Yang
|
Jingwei Zhu
|
Di Yang
|
Jiahao Zhao
|
Guancheng Ye
|
Chengming Li
|
Xiping Hu
Findings of the Association for Computational Linguistics: ACL 2024
Using large language models (LLMs) to assist psychological counseling is a significant but challenging task at present. Attempts have been made on improving empathetic conversations or acting as effective assistants in the treatment with LLMs. However, the existing datasets lack consulting knowledge, resulting in LLMs lacking professional consulting competence. Moreover, how to automatically evaluate multi-turn dialogues within the counseling process remains an understudied area. To bridge the gap, we propose CPsyCoun, a report-based multi-turn dialogue reconstruction and evaluation framework for Chinese psychological counseling. To fully exploit psychological counseling reports, a two-phase approach is devised to construct high-quality dialogues while a comprehensive evaluation benchmark is developed for the effective automatic evaluation of multi-turn psychological consultations. Competitive experimental results demonstrate the effectiveness of our proposed framework in psychological counseling. We open-source the datasets and model for future research.
pdf
bib
abs
Forgetting before Learning: Utilizing Parametric Arithmetic for Knowledge Updating in Large Language Models
Shiwen Ni
|
Dingwei Chen
|
Chengming Li
|
Xiping Hu
|
Ruifeng Xu
|
Min Yang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Recent advancements in Large Language Models (LLMs) have showcased their remarkable capabilities in text understanding and generation. However, even stronger LLMs are susceptible to acquiring erroneous or obsolete information from the training corpus. Direct secondary fine-tuning with data containing new knowledge may be ineffective in updating knowledge due to the conflict between old and new knowledge. In this paper, we propose a new paradigm for fine-tuning called F-Learning (Forgetting before Learning), which employs parametric arithmetic to facilitate the forgetting of old knowledge and learning of new knowledge. Experimental results on two publicly available datasets demonstrate that our proposed F-Learning can obviously improve the knowledge updating performance of both full fine-tuning and LoRA fine-tuning, simultaneously outperforming the existing baselines in most cases. Moreover, we have also discovered that forgetting old knowledge by subtracting the parameters of LoRA can yield a similar effect to subtracting the parameters of full fine-tuning, and occasionally even surpass it significantly.
pdf
bib
abs
CLHA: A Simple Yet Effective Contrastive Learning Framework for Human Alignment
Feiteng Fang
|
Liang Zhu
|
Xi Feng
|
Jinchang Hou
|
Qixuan Zhao
|
Chengming Li
|
Xiping Hu
|
Ruifeng Xu
|
Min Yang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Reinforcement learning from human feedback (RLHF) is a crucial technique in aligning large language models (LLMs) with human preferences, ensuring these LLMs behave in beneficial and comprehensible ways to users. However, a longstanding challenge in human alignment techniques based on reinforcement learning lies in their inherent complexity and difficulty in training. To address this challenge, we present a simple yet effective Contrastive Learning Framework for Human Alignment (CLHA) to align LLMs with human preferences directly. CLHA employs a novel rescoring strategy to evaluate the noise within the data by considering its inherent quality and dynamically adjusting the training process. Simultaneously, CLHA utilizes pairwise contrastive loss and adaptive supervised fine-tuning loss to adaptively modify the likelihood of generating responses, ensuring enhanced alignment with human preferences. Using advanced methods, CLHA surpasses other algorithms, showcasing superior performance in terms of reward model scores, automatic evaluations, and human assessments on the widely used “Helpful and Harmless” dataset.
pdf
bib
abs
MoZIP: A Multilingual Benchmark to Evaluate Large Language Models in Intellectual Property
Shiwen Ni
|
Minghuan Tan
|
Yuelin Bai
|
Fuqiang Niu
|
Min Yang
|
Bowen Zhang
|
Ruifeng Xu
|
Xiaojun Chen
|
Chengming Li
|
Xiping Hu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
Large language models (LLMs) have demonstrated impressive performance in various natural language processing (NLP) tasks. However, there is limited understanding of how well LLMs perform in specific domains (e.g, the intellectual property (IP) domain). In this paper, we contribute a new benchmark, the first Multilingual-oriented quiZ on Intellectual Property (MoZIP), for the evaluation of LLMs in the IP domain. The MoZIP benchmark includes three challenging tasks: IP multiple-choice quiz (IPQuiz), IP question answering (IPQA), and patent matching (PatentMatch). In addition, we also develop a new IP-oriented multilingual large language model (called MoZi), which is a BLOOMZ-based model that has been supervised fine-tuned with multilingual IP-related text data. We evaluate our proposed MoZi model and four well-known LLMs (i.e., BLOOMZ, BELLE, ChatGLM and ChatGPT) on the MoZIP benchmark. Experimental results demonstrate that MoZi outperforms BLOOMZ, BELLE and ChatGLM by a noticeable margin, while it had lower scores compared with ChatGPT. Notably, the performance of current LLMs on the MoZIP benchmark has much room for improvement, and even the most powerful ChatGPT does not reach the passing level. Our source code, data, and models are available at
https://github.com/AI-for-Science/MoZi.
pdf
bib
abs
TP-Link: Fine-grained Pre-Training for Text-to-SQL Parsing with Linking Information
Ziqiang Liu
|
Shujie Li
|
Zefeng Cai
|
Xiangyu Li
|
Yunshui Li
|
Chengming Li
|
Xiping Hu
|
Ruifeng Xu
|
Min Yang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)
In this paper, we introduce an innovative pre-training framework TP-Link, which aims to improve context-dependent Text-to-SQL Parsing by leveraging Linking information. This enhancement is achieved through better representation of both natural language utterances and the database schema, ultimately facilitating more effective text-to-SQL conversations. We present two novel pre-training objectives: (i) utterance linking prediction (ULP) task that models intricate syntactic relationships among natural language utterances in context-dependent text-to-SQL scenarios, and (ii) schema linking prediction (SLP) task that focuses on capturing fine-grained schema linking relationships between the utterances and the database schema. Extensive experiments demonstrate that our proposed TP-Link achieves state-of-the-art performance on two leading downstream benchmarks (i.e., SParC and CoSQL).