2024
pdf
bib
abs
Watch Every Step! LLM Agent Learning via Iterative Step-level Process Refinement
Weimin Xiong
|
Yifan Song
|
Xiutian Zhao
|
Wenhao Wu
|
Xun Wang
|
Ke Wang
|
Cheng Li
|
Wei Peng
|
Sujian Li
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Large language model agents have exhibited exceptional performance across a range of complex interactive tasks. Recent approaches have utilized tuning with expert trajectories to enhance agent performance, yet they primarily concentrate on outcome rewards, which may lead to errors or suboptimal actions due to the absence of process supervision signals. In this paper, we introduce the **I**terative step-level **P**rocess **R**efinement **(IPR)** framework, which provides detailed step-by-step guidance to enhance agent training. Specifically, we adopt the Monte Carlo method to estimate step-level rewards. During each iteration, the agent explores along the expert trajectory and generates new actions. These actions are then evaluated against the corresponding step of expert trajectory using step-level rewards. Such comparison helps identify discrepancies, yielding contrastive action pairs that serve as training data for the agent. Our experiments on three complex agent tasks demonstrate that our framework outperforms a variety of strong baselines. Moreover, our analytical finds highlight the effectiveness of IPR in augmenting action efficiency and its applicability to diverse models.
pdf
bib
abs
An Electoral Approach to Diversify LLM-based Multi-Agent Collective Decision-Making
Xiutian Zhao
|
Ke Wang
|
Wei Peng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Modern large language models (LLMs) have exhibited cooperative synergy on complex task-solving, and collective decision-making (CDM) is a pivotal component in LLM-based multi-agent collaboration frameworks. Our survey on 52 recent such systems uncovers a severe lack of diversity, with a heavy reliance on dictatorial and plurality voting for CDM. Through the lens of social choice theory, we scrutinize widely-adopted CDM methods and identify their limitations. To enrich current landscape of LLM-based CDM, we present GEDI, an electoral CDM module that incorporates various ordinal preferential voting mechanisms. Our empirical case study across three benchmarks shows that the integration of certain CDM methods can markedly improve the reasoning capabilities and robustness of some leading LLMs, all without requiring intricate system designs. Additionally, we find that some CDM mechanisms generate positive synergies even with as few as three agents. The voting-based methods also demonstrate robustness against single points of failure, as well as diversity in terms of hit-rate@k and subject-wise impacts.
pdf
bib
abs
AgentBank: Towards Generalized LLM Agents via Fine-Tuning on 50000+ Interaction Trajectories
Yifan Song
|
Weimin Xiong
|
Xiutian Zhao
|
Dawei Zhu
|
Wenhao Wu
|
Ke Wang
|
Cheng Li
|
Wei Peng
|
Sujian Li
Findings of the Association for Computational Linguistics: EMNLP 2024
Fine-tuning on agent-environment interaction trajectory data holds significant promise for surfacing generalized agent capabilities in open-source large language models (LLMs). In this work, we introduce AgentBank, by far the largest trajectory tuning data collection featuring more than 50k diverse high-quality interaction trajectories which comprises 16 tasks covering five distinct agent skill dimensions. Leveraging a novel annotation pipeline, we are able to scale the annotated trajectories and generate a trajectory dataset with minimized difficulty bias. Furthermore, we fine-tune LLMs on AgentBank to get a series of agent models, Samoyed. Our comparative experiments demonstrate the effectiveness of scaling the interaction trajectory data to acquire generalized agent capabilities. Additional studies also reveal some key observations regarding trajectory tuning and agent skill generalization.
pdf
bib
abs
Measuring the Inconsistency of Large Language Models in Preferential Ranking
Xiutian Zhao
|
Ke Wang
|
Wei Peng
Proceedings of the 1st Workshop on Towards Knowledgeable Language Models (KnowLLM 2024)
Despite large language models’ (LLMs’) recent advancements, their bias and hallucination issues persist, and their ability to offer consistent and preferential rankings remains underexplored. This study investigates the capacity of LLMs to provide consistent ordinal preferences, a crucial aspect in scenarios lacking absolute answers. We introduce a formalization of consistency based on order theory, outlining criteria such as transitivity, asymmetry, reversibility, and independence from irrelevant alternatives. Our diagnostic experiments on selected state-of-the-art LLMs reveal their inability to meet these criteria, indicating a strong positional bias and poor transitivity, with preferences easily swayed by irrelevant alternatives. These findings highlight a significant inconsistency in LLM-generated preferential rankings, underscoring the need for further research to address these limitations.
2023
pdf
bib
abs
PROSE: A Pronoun Omission Solution for Chinese-English Spoken Language Translation
Ke Wang
|
Xiutian Zhao
|
Yanghui Li
|
Wei Peng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Neural Machine Translation (NMT) systems encounter a significant challenge when translating a pro-drop (‘pronoun-dropping’) language (e.g., Chinese) to a non-pro-drop one (e.g., English), since the pro-drop phenomenon demands NMT systems to recover omitted pronouns. This unique and crucial task, however, lacks sufficient datasets for benchmarking. To bridge this gap, we introduce PROSE, a new benchmark featured in diverse pro-drop instances for document-level Chinese-English spoken language translation. Furthermore, we conduct an in-depth investigation of the pro-drop phenomenon in spoken Chinese on this dataset, reconfirming that pro-drop reduces the performance of NMT systems in Chinese-English translation. To alleviate the negative impact introduced by pro-drop, we propose Mention-Aware Semantic Augmentation, a novel approach that leverages the semantic embedding of dropped pronouns to augment training pairs. Results from the experiments on four Chinese-English translation corpora show that our proposed method outperforms existing methods regarding omitted pronoun retrieval and overall translation quality.
pdf
bib
abs
M3Seg: A Maximum-Minimum Mutual Information Paradigm for Unsupervised Topic Segmentation in ASR Transcripts
Ke Wang
|
Xiutian Zhao
|
Yanghui Li
|
Wei Peng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Topic segmentation aims to detect topic boundaries and split automatic speech recognition transcriptions (e.g., meeting transcripts) into segments that are bounded by thematic meanings. In this work, we propose M3Seg, a novel Maximum-Minimum Mutual information paradigm for linear topic segmentation without using any parallel data. Specifically, by employing sentence representations provided by pre-trained language models, M3Seg first learns a region-based segment encoder based on the maximization of mutual information between the global segment representation and the local contextual sentence representation. Secondly, an edge-based boundary detection module aims to segment the whole by topics based on minimizing the mutual information between different segments. Experiment results on two public datasets demonstrate the effectiveness of M3Seg, which outperform the state-of-the-art methods by a significant (18%–37% improvement) margin.
pdf
bib
abs
ORCHID: A Chinese Debate Corpus for Target-Independent Stance Detection and Argumentative Dialogue Summarization
Xiutian Zhao
|
Ke Wang
|
Wei Peng
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Dialogue agents have been receiving increasing attention for years, and this trend has been further boosted by the recent progress of large language models (LLMs). Stance detection and dialogue summarization are two core tasks of dialogue agents in application scenarios that involve argumentative dialogues. However, research on these tasks is limited by the insufficiency of public datasets, especially for non-English languages. To address this language resource gap in Chinese, we present ORCHID (Oral Chinese Debate), the first Chinese dataset for benchmarking target-independent stance detection and debate summarization. Our dataset consists of 1,218 real-world debates that were conducted in Chinese on 476 unique topics, containing 2,436 stance-specific summaries and 14,133 fully annotated utterances. Besides providing a versatile testbed for future research, we also conduct an empirical study on the dataset and propose an integrated task. The results show the challenging nature of the dataset and suggest a potential of incorporating stance detection in summarization for argumentative dialogue.