Xiyan Fu


2024

pdf bib
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)
Xiyan Fu | Eve Fleisig
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 4: Student Research Workshop)

pdf bib
The Mystery of Compositional Generalization in Graph-based Generative Commonsense Reasoning
Xiyan Fu | Anette Frank
Findings of the Association for Computational Linguistics: EMNLP 2024

While LLMs have emerged as performant architectures for reasoning tasks, their compositional generalization capabilities have been questioned. In this work, we introduce a Compositional Generalization Challenge for Graph-based Commonsense Reasoning (CGGC) that goes beyond previous evaluations that are based on sequences or tree structures – and instead involves a reasoning graph: It requires models to generate a natural sentence based on given concepts and a corresponding reasoning graph, where the presented graph involves a previously unseen combination of relation types. To master this challenge, models need to learn how to reason over relation tupels within the graph, and how to compose them when conceptualizing a verbalization. We evaluate seven well-known LLMs using in-context learning and find that performant LLMs still struggle in compositional generalization. We investigate potential causes of this gap by analyzing the structures of reasoning graphs, and find that different structures present varying levels of difficulty for compositional generalization. Arranging the order of demonstrations according to the structures’ difficulty shows that organizing samples in an easy-to-hard schema enhances the compositional generalization ability of LLMs.

pdf bib
Compositional Structured Explanation Generation with Dynamic Modularized Reasoning
Xiyan Fu | Anette Frank
Proceedings of the 13th Joint Conference on Lexical and Computational Semantics (*SEM 2024)

In this work, we propose a new task, compositional structured explanation generation (CSEG), to facilitate research on compositional generalization in reasoning. Despite the success of language models in solving reasoning tasks, their compositional generalization capabilities are under-researched. Our new CSEG task tests a model’s ability to generalize from generating entailment trees with a limited number of inference steps – to more steps, focusing on the length and shapes of entailment trees. CSEG is challenging in requiring both reasoning and compositional generalization abilities, and by being framed as a generation task. Besides the CSEG task, we propose a new dynamic modularized reasoning model, MORSE, that factorizes the inference process into modules, where each module represents a functional unit. We adopt modularized self-attention to dynamically select and route inputs to dedicated heads, which specializes them to specific functions. Using CSEG, we compare MORSE to models from prior work. Our analyses show that the task is challenging, but that the dynamic reasoning modules of MORSE are effective, showing competitive compositional generalization abilities in a generation setting.

pdf bib
Exploring Continual Learning of Compositional Generalization in NLI
Xiyan Fu | Anette Frank
Transactions of the Association for Computational Linguistics, Volume 12

Compositional Natural Language Inference (NLI) has been explored to assess the true abilities of neural models to perform NLI. Yet, current evaluations assume models to have full access to all primitive inferences in advance, in contrast to humans that continuously acquire inference knowledge. In this paper, we introduce the Continual Compositional Generalization in Inference (C2Gen NLI) challenge, where a model continuously acquires knowledge of constituting primitive inference tasks as a basis for compositional inferences. We explore how continual learning affects compositional generalization in NLI, by designing a continual learning setup for compositional NLI inference tasks. Our experiments demonstrate that models fail to compositionally generalize in a continual scenario. To address this problem, we first benchmark various continual learning algorithms and verify their efficacy. We then further analyze C2Gen, focusing on how to order primitives and compositional inference types, and examining correlations between subtasks. Our analyses show that by learning subtasks continuously while observing their dependencies and increasing degrees of difficulty, continual learning can enhance composition generalization ability.1

2023

pdf bib
Modeling Structural Similarities between Documents for Coherence Assessment with Graph Convolutional Networks
Wei Liu | Xiyan Fu | Michael Strube
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Coherence is an important aspect of text quality, and various approaches have been applied to coherence modeling. However, existing methods solely focus on a single document’s coherence patterns, ignoring the underlying correlation between documents. We investigate a GCN-based coherence model that is capable of capturing structural similarities between documents. Our model first creates a graph structure for each document, from where we mine different subgraph patterns. We then construct a heterogeneous graph for the training corpus, connecting documents based on their shared subgraphs. Finally, a GCN is applied to the heterogeneous graph to model the connectivity relationships. We evaluate our method on two tasks, assessing discourse coherence and automated essay scoring. Results show that our GCN-based model outperforms all baselines, achieving a new state-of-the-art on both tasks.

pdf bib
SETI: Systematicity Evaluation of Textual Inference
Xiyan Fu | Anette Frank
Findings of the Association for Computational Linguistics: ACL 2023

We propose SETI (Systematicity Evaluation of Textual Inference), a novel and comprehensive benchmark designed for evaluating pre-trained language models (PLMs) for their systematicity capabilities in the domain of textual inference. Specifically, SETI offers three different NLI tasks and corresponding datasets to evaluate various types of systematicity in reasoning processes. In order to solve these tasks, models are required to perform compositional inference based on known primitive constituents. We conduct experiments of SETI on six widely used PLMs. Results show that various PLMs are able to solve unseen compositional inferences when having encountered the knowledge of how to combine primitives, with good performance. However, they are considerably limited when this knowledge is unknown to the model (40-100 % points decrease). Furthermore, we find that PLMs are able to improve dramatically once exposed to crucial compositional knowledge in minimalistic shots. These findings position SETI as the first benchmark for measuring the future progress of PLMs in achieving systematicity generalization in the textual inference.

2021

pdf bib
Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter
Wei Liu | Xiyan Fu | Yue Zhang | Wenming Xiao
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

Lexicon information and pre-trained models, such as BERT, have been combined to explore Chinese sequence labeling tasks due to their respective strengths. However, existing methods solely fuse lexicon features via a shallow and random initialized sequence layer and do not integrate them into the bottom layers of BERT. In this paper, we propose Lexicon Enhanced BERT (LEBERT) for Chinese sequence labeling, which integrates external lexicon knowledge into BERT layers directly by a Lexicon Adapter layer. Compared with existing methods, our model facilitates deep lexicon knowledge fusion at the lower layers of BERT. Experiments on ten Chinese datasets of three tasks including Named Entity Recognition, Word Segmentation, and Part-of-Speech Tagging, show that LEBERT achieves state-of-the-art results.

pdf bib
RepSum: Unsupervised Dialogue Summarization based on Replacement Strategy
Xiyan Fu | Yating Zhang | Tianyi Wang | Xiaozhong Liu | Changlong Sun | Zhenglu Yang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In the field of dialogue summarization, due to the lack of training data, it is often difficult for supervised summary generation methods to learn vital information from dialogue context with limited data. Several attempts on unsupervised summarization for text by leveraging semantic information solely or auto-encoder strategy (i.e., sentence compression), it however cannot be adapted to the dialogue scene due to the limited words in utterances and huge gap between the dialogue and its summary. In this study, we propose a novel unsupervised strategy to address this challenge, which roots from the hypothetical foundation that a superior summary approximates a replacement of the original dialogue, and they are roughly equivalent for auxiliary (self-supervised) tasks, e.g., dialogue generation. The proposed strategy RepSum is applied to generate both extractive and abstractive summary with the guidance of the followed nˆth utterance generation and classification tasks. Extensive experiments on various datasets demonstrate the superiority of the proposed model compared with the state-of-the-art methods.

pdf bib
MM-AVS: A Full-Scale Dataset for Multi-modal Summarization
Xiyan Fu | Jun Wang | Zhenglu Yang
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Multimodal summarization becomes increasingly significant as it is the basis for question answering, Web search, and many other downstream tasks. However, its learning materials have been lacking a holistic organization by integrating resources from various modalities, thereby lagging behind the research progress of this field. In this study, we release a full-scale multimodal dataset comprehensively gathering documents, summaries, images, captions, videos, audios, transcripts, and titles in English from CNN and Daily Mail. To our best knowledge, this is the first collection that spans all modalities and nearly comprises all types of materials available in this community. In addition, we devise a baseline model based on the novel dataset, which employs a newly proposed Jump-Attention mechanism based on transcripts. The experimental results validate the important assistance role of the external information for multimodal summarization.