Other people with similar names:Yang Liu
(Edinburgh Ph.D., Microsoft),
Yang Liu
(3M Health Information Systems),
Yang Liu
(University of Helsinki),
Yang Liu (刘扬)
(刘扬; Ph.D Purdue; ICSI, Dallas, Facebook, Liulishuo, Amazon),
Yang Liu (刘扬)
(Peking University),
Yang Liu
(Microsoft Cognitive Services Research),
Yang Liu
(Tianjin University, China),
Yang Liu
(National University of Defense Technology),
Yang Liu
(The Chinese University of Hong Kong (Shenzhen)),
Yang Janet Liu
(Georgetown University; 刘洋),
Yang Liu
(May refer to several people),
Yang Liu
(Samsung Research Center Beijing),
Yang Liu
(Beijing Language and Culture University),
Yang Liu (刘洋)
(刘洋; ICT, Tsinghua, Beijing Academy of Artificial Intelligence),
Yang Liu
(Wilfrid Laurier University)
Recently pre-trained multimodal models, such as CLIP, have shown exceptional capabilities towards connecting images and natural language. The textual representations in English can be desirably transferred to multilingualism and support downstream multimodal tasks for different languages. Nevertheless, the principle of multilingual fairness is rarely scrutinized: do multilingual multimodal models treat languages equally? Are their performances biased towards particular languages? To answer these questions, we view language as the fairness recipient and introduce two new fairness notions, multilingual individual fairness and multilingual group fairness, for pre-trained multimodal models. Multilingual individual fairness requires that text snippets expressing similar semantics in different languages connect similarly to images, while multilingual group fairness requires equalized predictive performance across languages. We characterize the extent to which pre-trained multilingual vision-and-language representations are individually fair across languages. However, extensive experiments demonstrate that multilingual representations do not satisfy group fairness: (1) there is a severe multilingual accuracy disparity issue; (2) the errors exhibit biases across languages conditioning the group of people in the images, including race, gender and age.
Research Replication Prediction (RRP) is the task of predicting whether a published research result can be replicated or not. Building an interpretable neural text classifier for RRP promotes the understanding of why a research paper is predicted as replicable or non-replicable and therefore makes its real-world application more reliable and trustworthy. However, the prior works on model interpretation mainly focused on improving the model interpretability at the word/phrase level, which are insufficient especially for long research papers in RRP. Furthermore, the existing methods cannot utilize a large size of unlabeled dataset to further improve the model interpretability. To address these limitations, we aim to build an interpretable neural model which can provide sentence-level explanations and apply weakly supervised approach to further leverage the large corpus of unlabeled datasets to boost the interpretability in addition to improving prediction performance as existing works have done. In this work, we propose the Variational Contextual Consistency Sentence Masking (VCCSM) method to automatically extract key sentences based on the context in the classifier, using both labeled and unlabeled datasets. Results of our experiments on RRP along with European Convention of Human Rights (ECHR) datasets demonstrate that VCCSM is able to improve the model interpretability for the long document classification tasks using the area over the perturbation curve and post-hoc accuracy as evaluation metrics.
Internet search affects people’s cognition of the world, so mitigating biases in search results and learning fair models is imperative for social good. We study a unique gender bias in image search in this work: the search images are often gender-imbalanced for gender-neutral natural language queries. We diagnose two typical image search models, the specialized model trained on in-domain datasets and the generalized representation model pre-trained on massive image and text data across the internet. Both models suffer from severe gender bias. Therefore, we introduce two novel debiasing approaches: an in-processing fair sampling method to address the gender imbalance issue for training models, and a post-processing feature clipping method base on mutual information to debias multimodal representations of pre-trained models. Extensive experiments on MS-COCO and Flickr30K benchmarks show that our methods significantly reduce the gender bias in image search models.
Knowing whether a published research result can be replicated is important. Carrying out direct replication of published research incurs a high cost. There are efforts tried to use machine learning aided methods to predict scientific claims’ replicability. However, existing machine learning aided approaches use only hand-extracted statistics features such as p-value, sample size, etc. without utilizing research papers’ text information and train only on a very small size of annotated data without making the most use of a large number of unlabeled articles. Therefore, it is desirable to develop effective machine learning aided automatic methods which can automatically extract text information as features so that we can benefit from Natural Language Processing techniques. Besides, we aim for an approach that benefits from both labeled and the large number of unlabeled data. In this paper, we propose two weakly supervised learning approaches that use automatically extracted text information of research papers to improve the prediction accuracy of research replication using both labeled and unlabeled datasets. Our experiments over real-world datasets show that our approaches obtain much better prediction performance compared to the supervised models utilizing only statistic features and a small size of labeled dataset. Further, we are able to achieve an accuracy of 75.76% for predicting the replicability of research.