This paper presents BattleAgent, a detailed emulation demonstration system that combines the Large Vision-Language Model (VLM) and Multi-Agent System (MAS). This novel system aims to emulate complex dynamic interactions among multiple agents, as well as between agents and their environments, over a period of time. The emulation showcases the current capabilities of agents, featuring fine-grained multi-modal interactions between agents and landscapes. It develops customizable agent structures to meet specific situational requirements, for example, a variety of battle-related activities like scouting and trench digging. These components collaborate to recreate historical events in a lively and comprehensive manner. This methodology holds the potential to substantially improve visualization of historical events and deepen our understanding of historical events especially from the perspective of decision making. The data and code for this project are accessible at https://github.com/agiresearch/battleagent and the demo is accessible at https://drive.google.com/file/d/1I5B3KWiYCSSP1uMiPGNmXlTmild-MzRJ/view?usp=sharing.
The emergence of large-scale pre-trained language models has revolutionized various AI research domains. Transformers-based Large Language Models (LLMs) have gradually replaced CNNs and RNNs to unify fields of computer vision and natural language processing. Compared with independent data like images, videos or texts, graphs usually contain rich structural and relational information. Meanwhile, languages, especially natural language, being one of the most expressive mediums, excels in describing complex structures. However, existing work on incorporating graph problems into the generative language modeling framework remains very limited. Considering the rising prominence of LLMs, it becomes essential to explore whether LLMs can also replace GNNs as the foundation model for graphs. In this paper, we propose InstructGLM (Instruction-finetuned Graph Language Model) with highly scalable prompts based on natural language instructions. We use natural language to describe multi-scale geometric structure of the graph and then instruction finetune an LLM to perform graph tasks, which enables Generative Graph Learning. Our method surpasses all GNN baselines on ogbn-arxiv, Cora and PubMed datasets, underscoring its effectiveness and sheds light on generative LLMs as new foundation model for graph machine learning. Our code is available at https://github.com/agiresearch/InstructGLM.
Chain of Thought (CoT) is significant in improving the reasoning abilities of large language models (LLMs). However, the correlation between the effectiveness of CoT and the length of reasoning steps in prompts remains largely unknown. To shed light on this, we have conducted several empirical experiments to explore the relations. Specifically, we design experiments that expand and compress the rationale reasoning steps within CoT demonstrations, while keeping all other factors constant. We have the following key findings. First, the results indicate that lengthening the reasoning steps in prompts, even without adding new information into the prompt, considerably enhances LLMs’ reasoning abilities across multiple datasets. Alternatively, shortening the reasoning steps, even while preserving the key information, significantly diminishes the reasoning abilities of models. This finding highlights the importance of the number of steps in CoT prompts and provides practical guidance to make better use of LLMs’ potential in complex problem-solving scenarios. Second, we also investigated the relationship between the performance of CoT and the rationales used in demonstrations. Surprisingly, the result shows that even incorrect rationales can yield favorable outcomes if they maintain the requisite length of inference. Third, we observed that the advantages of increasing reasoning steps are task-dependent: simpler tasks require fewer steps, whereas complex tasks gain significantly from longer inference sequences.
The rise of LLM-based agents shows great potential to revolutionize task planning, capturing significant attention. Given that these agents will be integrated into high-stake domains, ensuring their reliability and safety is crucial. This paper presents an Agent-Constitution-based agent framework, TrustAgent, with a particular focus on improving the LLM-based agent safety. The proposed framework ensures strict adherence to the Agent Constitution through three strategic components: pre-planning strategy which injects safety knowledge to the model before plan generation, in-planning strategy which enhances safety during plan generation, and post-planning strategy which ensures safety by post-planning inspection. Our experimental results demonstrate that the proposed framework can effectively enhance an LLM agent’s safety across multiple domains by identifying and mitigating potential dangers during the planning. Further analysis reveals that the framework not only improves safety but also enhances the helpfulness of the agent. Additionally, we highlight the importance of the LLM reasoning ability in adhering to the Constitution. This paper sheds light on how to ensure the safe integration of LLM-based agents into human-centric environments. Data and code are available at https://anonymous.4open.science/r/TrustAgent-06DC.
Entity Resolution (ER) is an essential task in data integration and its goal is to find records that represent the same entity in a dataset. Deep learning models, especially large pre-trained language models, have achieved state-of-the-art results on this task. A typical ER pipeline consists of Entity Blocking and Entity Matching: Entity Blocking finds candidate record pairs that potentially match and Entity Matching determines if the pairs match. The goal of the entity blocking step is to include as many matching pairs as possible while including as few non-matching pairs as possible. On the other hand, the blocking task can also be considered as an Information Retrieval (IR) task. However, state-of-the-art neural IR models that are based on large language models have not been evaluated on the ER task. What’s more, the generalization ability of state-of-the-art methods for entity blocking is not well-studied but an import aspect in real-world applications. In this work, we evaluate state-of-the-art models for Entity Blocking along with neural IR models on a wide range of real-world datasets, and also study their in-distribution and out-of-distribution generalization abilities.
Recent advances in Foundation Models such as Large Language Models (LLMs) have propelled them to the forefront of Recommender Systems (RS). Despite their utility, there is a growing concern that LLMs might inadvertently perpetuate societal stereotypes, resulting in unfair recommendations. Since fairness is critical for RS as many users take it for decision-making and demand fulfillment, this paper focuses on user-side fairness for LLM-based recommendation where the users may require a recommender system to be fair on specific sensitive features such as gender or age. In this paper, we dive into the extent of unfairness exhibited by LLM-based recommender models based on both T5 and LLaMA backbones, and discuss appropriate methods for promoting equitable treatment of users in LLM-based recommendation models. We introduce a novel Counterfactually-Fair-Prompt (CFP) method towards Unbiased Foundation mOdels (UFO) for fairness-aware LLM-based recommendation. Experiments are conducted on two real-world datasets, MovieLens-1M and Insurance, and compared with both matching-based and sequential-based fairness-aware recommendation models. Results show that CFP achieves better recommendation performance with a high level of fairness.
Complex reasoning ability is one of the most important features of Large Language Models (LLMs). Numerous benchmarks have been established to assess the reasoning abilities of LLMs. However, they are inadequate in offering a rigorous evaluation and prone to the risk of overfitting, as these publicly accessible and static benchmarks allow models to potentially tailor their responses to specific benchmark metrics, thereby inflating their performance. Addressing these limitations, we introduce a new benchmark NPHardEval. It contains a broad spectrum of 900 algorithmic questions belonging up to the NP-Hard complexity class, offering a rigorous measure of the reasoning ability of LLMs utilizing computational complexity. Moreover, this benchmark is designed with a dynamic update mechanism, where the datapoints are refreshed on a monthly basis. Such regular updates play a crucial role in mitigating the risk of LLMs overfitting to the benchmark, promoting a more accurate and reliable assessment of their reasoning capabilities. The benchmark dataset and code of NPHardEval are available at https://github.com/casmlab/NPHardEval.
Large language models (LLM) not only have revolutionized the field of natural language processing (NLP) but also have the potential to reshape many other fields, e.g., recommender systems (RS). However, most of the related work treats an LLM as a component of the conventional recommendation pipeline (e.g., as a feature extractor), which may not be able to fully leverage the generative power of LLM. Instead of separating the recommendation process into multiple stages, such as score computation and re-ranking, this process can be simplified to one stage with LLM: directly generating recommendations from the complete pool of items. This survey reviews the progress, methods, and future directions of LLM-based generative recommendation by examining three questions: 1) What generative recommendation is, 2) Why RS should advance to generative recommendation, and 3) How to implement LLM-based generative recommendation for various RS tasks. We hope that this survey can provide the context and guidance needed to explore this interesting and emerging topic.
Computer Vision (CV), Natural Language Processing (NLP), and Recommender Systems (RecSys) are three prominent AI applications that have traditionally developed independently, resulting in disparate modeling and engineering methodologies. This has impeded the ability for these fields to directly benefit from each other’s advancements. With the recent development of foundation models, large language models have emerged as a potential general-purpose interface for unifying different modalities and problem formulations. In light of this, we propose the development of a multimodal foundation model (MFM) considering visual, textual, and personalization modalities under the P5 recommendation paradigm, thus named VIP5 (Visual P5), to unify various modalities and recommendation tasks. This will enable the processing of multiple modalities in a shared architecture for improved recommendations. To achieve this, we introduce multimodal personalized prompts to accommodate multiple modalities under a shared format. Additionally, we propose a parameter-efficient training method for foundation models, which involves freezing the P5 backbone and fine-tuning lightweight adapters, resulting in improved recommendation performance and increased efficiency in terms of training time and memory usage. Code and data of VIP5 are available at https://github.com/jeykigung/VIP5.
Pretrained natural language processing (NLP) models have achieved high overall performance, but they still make systematic errors. Instead of manual error analysis, research on slice detection models (SDMs), which automatically identify underperforming groups of datapoints, has caught escalated attention in Computer Vision for both understanding model behaviors and providing insights for future model training and designing. However, little research on SDMs and quantitative evaluation of their effectiveness have been conducted on NLP tasks. Our paper fills the gap by proposing a benchmark named “Discover, Explain, Improve (DEIm)” for classification NLP tasks along with a new SDM Edisa. Edisa discovers coherent and underperforming groups of datapoints; DEIm then unites them under human-understandable concepts and provides comprehensive evaluation tasks and corresponding quantitative metrics. The evaluation in DEIm shows that Edisa can accurately select error-prone datapoints with informative semantic features that summarize error patterns. Detecting difficult datapoints directly boosts model performance without tuning any original model parameters, showing that discovered slices are actionable for users.1
In modern recommender systems, there are usually comments or reviews from users that justify their ratings for different items. Trained on such textual corpus, explainable recommendation models learn to discover user interests and generate personalized explanations. Though able to provide plausible explanations, existing models tend to generate repeated sentences for different items or empty sentences with insufficient details. This begs an interesting question: can we immerse the models in a multimodal environment to gain proper awareness of real-world concepts and alleviate above shortcomings? To this end, we propose a visually-enhanced approach named METER with the help of visualization generation and text–image matching discrimination: the explainable recommendation model is encouraged to visualize what it refers to while incurring a penalty if the visualization is incongruent with the textual explanation. Experimental results and a manual assessment demonstrate that our approach can improve not only the text quality but also the diversity and explainability of the generated explanations.
Logical reasoning is a challenge for many current NLP neural network models since it requires more than the ability of learning informative representations from data. Inspired by the Dual Process Theory in cognitive science — which proposes that human cognition process involves two stages: an intuitive, unconscious and fast process relying on perception calledSystem 1, and a logical, conscious and slow process performing complex reasoning called System 2 — we leverage neural logic reasoning (System 2) on top of the representation learning models (System 1), which conducts explicit neural-based differentiable logical reasoning on top of the representations learned by the base neural models. Based on experiments on the commonsense knowledge graph completion task, we show that the two-system architecture always improves from its System 1 model alone. Experiments also show that both the rule-driven logical regularizer and the data-driven value regularizer are important and the performance improvement is marginal without the two regularizers, which indicates that learning from both logical prior and training data is important for reasoning tasks.
Predicting the key explanation concept is essential for generating commonsense explanations. This paper introduces a method to predict the concept from pre-trained language models for commonsense explanation generation. Our experiment found that adopting a language model as the concept extractor and fine-tuning it with 20% training data can improve the quality and accuracy of the generated explanations over multiple evaluation metrics. Compared with conventional methods that search concepts over knowledge graphs, our method does not require the preparation and training models to search through knowledge graphs. To better understand the results from pre-trained language models, we also designed a metric to evaluate the retrieved concepts. Through analysis and experiments, we show the correlation between this metric and the performance of the generators, and we also show the importance of attaching concepts for generating high-quality sentences.
In light of the prominence of Pre-trained Language Models (PLMs) across numerous downstream tasks, shedding light on what they learn is an important endeavor. Whereas previous work focuses on assessing in-domain knowledge, we evaluate the generalization ability in biased scenarios through component combinations where it could be easy for the PLMs to learn shortcuts from the training corpus. This would lead to poor performance on the testing corpus, which is combinationally reconstructed from the training components. The results show that PLMs are able to overcome such distribution shifts for specific tasks and with sufficient data. We further find that overfitting can lead the models to depend more on biases for prediction, thus hurting the combinational generalization ability of PLMs.
Personalization of natural language generation plays a vital role in a large spectrum of tasks, such as explainable recommendation, review summarization and dialog systems. In these tasks, user and item IDs are important identifiers for personalization. Transformer, which is demonstrated with strong language modeling capability, however, is not personalized and fails to make use of the user and item IDs since the ID tokens are not even in the same semantic space as the words. To address this problem, we present a PErsonalized Transformer for Explainable Recommendation (PETER), on which we design a simple and effective learning objective that utilizes the IDs to predict the words in the target explanation, so as to endow the IDs with linguistic meanings and to achieve personalized Transformer. Besides generating explanations, PETER can also make recommendations, which makes it a unified model for the whole recommendation-explanation pipeline. Extensive experiments show that our small unpretrained model outperforms fine-tuned BERT on the generation task, in terms of both effectiveness and efficiency, which highlights the importance and the nice utility of our design.
Knowledge graphs (KG) have become increasingly important to endow modern recommender systems with the ability to generate traceable reasoning paths to explain the recommendation process. However, prior research rarely considers the faithfulness of the derived explanations to justify the decision-making process. To the best of our knowledge, this is the first work that models and evaluates faithfully explainable recommendation under the framework of KG reasoning. Specifically, we propose neural logic reasoning for explainable recommendation (LOGER) by drawing on interpretable logical rules to guide the path-reasoning process for explanation generation. We experiment on three large-scale datasets in the e-commerce domain, demonstrating the effectiveness of our method in delivering high-quality recommendations as well as ascertaining the faithfulness of the derived explanation.
Generating knowledge from natural language data has aided in solving many artificial intelligence problems. Vector representations of words have been the driving force behind the majority of natural language processing tasks. This paper develops a novel approach for predicting the conservation status of animal species using custom generated scientific name embeddings. We use two different vector embeddings generated using representation learning on Wikipedia text and animal taxonomy data. We generate name embeddings for all species in the animal kingdom using unsupervised learning and build a model on the IUCN Red List dataset to classify species into endangered or least-concern. To our knowledge, this is the first work that makes use of learnt features instead of handcrafted features for this task and achieves competitive results. Based on the high confidence results of our model, we also predict the conservation status of data deficient species whose conservation status is still unknown and thus steering more focus towards them for protection. These embeddings have also been made publicly available here. We believe this will greatly help in solving various downstream tasks and further advance research in the cross-domain involving natural language processing, conservation biology, and life sciences.