Yue Fan


2024

pdf bib
Muffin or Chihuahua? Challenging Multimodal Large Language Models with Multipanel VQA
Yue Fan | Jing Gu | Kaiwen Zhou | Qianqi Yan | Shan Jiang | Ching-Chen Kuo | Yang Zhao | Xinze Guan | Xin Wang
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Multipanel images, commonly seen as web screenshots, posters, etc., pervade our daily lives. These images, characterized by their composition of multiple subfigures in distinct layouts, effectively convey information to people. Toward building advanced multimodal AI applications, such as agents that understand complex scenes and navigate through webpages, the skill of multipanel visual reasoning is essential, and a comprehensive evaluation of models in this regard is important. Therefore, we introduce Multipanel Visual Question Answering (MultipanelVQA), a novel benchmark comprising 6,600 triplets of questions, answers, and multipanel images that specifically challenge models in comprehending multipanel images. Our evaluation shows that questions in the MultipanelVQA benchmark pose significant challenges to the state-of-the-art Multimodal Large Language Models (MLLMs) tested, even though humans can attain approximately 99% accuracy on these questions. Distinctively, the MultipanelVQA benchmark features synthetically generated multipanel images specifically crafted to isolate and assess the impact of various factors, such as the layout, on MLLMs’ multipanel image comprehension abilities. As a result, in addition to benchmarking the capabilities of MLLMs in understanding multipanel images, we analyze various factors of the multipanel image that affect MLLMs’ performance with synthetic data and offer insights for enhancement.

pdf bib
Read Anywhere Pointed: Layout-aware GUI Screen Reading with Tree-of-Lens Grounding
Yue Fan | Lei Ding | Ching-Chen Kuo | Shan Jiang | Yang Zhao | Xinze Guan | Jie Yang | Yi Zhang | Xin Eric Wang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Graphical User Interfaces (GUIs) are central to our interaction with digital devices and growing efforts have been made to build models for various GUI understanding tasks. However, these efforts largely overlook an important GUI-referring task: screen reading based on user-indicated points, which we name the Screen Point-and-Read (ScreenPR) task. Currently, this task is predominantly handled by rigid accessible screen reading tools, in great need of new models driven by advancements in Multimodal Large Language Models (MLLMs). In this paper, we propose a Tree-of-Lens (ToL) agent, utilizing a novel ToL grounding mechanism, to address the ScreenPR task. Based on the input point coordinate and the corresponding GUI screenshot, our ToL agent constructs a Hierarchical Layout Tree. Based on the tree, our ToL agent not only comprehends the content of the indicated area but also articulates the layout and spatial relationships between elements. Such layout information is crucial for accurately interpreting information on the screen, distinguishing our ToL agent from other screen reading tools. We also thoroughly evaluate the ToL agent against other baselines on a newly proposed ScreenPR benchmark, which includes GUIs from mobile, web, and operating systems. Last but not least, we test the ToL agent on mobile GUI navigation tasks, demonstrating its utility in identifying incorrect actions along the path of agent execution trajectories. Code and data: https://screen-point-and-read.github.io.

pdf bib
FRVA: Fact-Retrieval and Verification Augmented Entailment Tree Generation for Explainable Question Answering
Yue Fan | Hu Zhang | Ru Li | YuJie Wang | Hongye Tan | Jiye Liang
Findings of the Association for Computational Linguistics: ACL 2024

Structured entailment tree can exhibit the reasoning chains from knowledge facts to predicted answers, which is important for constructing an explainable question answering system. Existing works mainly include directly generating the entire tree and stepwise generating the proof steps. The stepwise methods can exploit combinatoriality and generalize to longer steps, but they have large fact search spaces and error accumulation problems resulting in the generation of invalid steps. In this paper, inspired by the Dual Process Theory in cognitive science, we propose FRVA, a Fact-Retrieval and Verification Augmented bidirectional entailment tree generation method that contains two systems. Specifically, System 1 makes intuitive judgments through the fact retrieval module and filters irrelevant facts to reduce the search space. System 2 designs a deductive-abductive bidirectional reasoning module, and we construct cross-verification and multi-view contrastive learning to make the generated proof steps closer to the target hypothesis. We enhance the reliability of the stepwise proofs to mitigate error propagation. Experiment results on EntailmentBank show that FRVA outperforms previous models and achieves state-of-the-art performance in fact selection and structural correctness.

pdf bib
Active Listening: Personalized Question Generation in Open-Domain Social Conversation with User Model Based Prompting
Kevin Bowden | Yue Fan | Winson Chen | Wen Cui | Davan Harrison | Xin Eric Wang | Marilyn Walker
Findings of the Association for Computational Linguistics: EMNLP 2024

Large language models (LLMs) capable of casual conversation have recently become widely available. We hypothesize that users of conversational systems want a more personalized experience, and existing work shows that users are highly receptive to personalized questions (PQs). Question Generation tasks, however, focus on factual questions from textual excerpts. To create a PQ generator, we first identify over 400 real user interests by anonymously aggregating ~39K user models. We then populate prompt templates with these 400 interests and use an LLM to generate PQs customized to user interests. The result is PerQs, a novel corpus of ~19K question/answer pairs. We evaluate PerQs at scale in the unique context of the Alexa Prize. Our results show significant positive effects on perceived conversation quality. We then fine-tune, deploy, and evaluate PerQy, a neural model that generates PQs in real-time. When evaluated against several competitive LLM baselines, PerQy produced the most natural and engaging responses.

2023

pdf bib
R2H: Building Multimodal Navigation Helpers that Respond to Help Requests
Yue Fan | Jing Gu | Kaizhi Zheng | Xin Wang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Intelligent navigation-helper agents are critical as they can navigate users in unknown areas through environmental awareness and conversational ability, serving as potential accessibility tools for individuals with disabilities. In this work, we first introduce a novel benchmark, Respond to Help Requests (R2H), to promote the development of multi-modal navigation helpers capable of responding to requests for help, utilizing existing dialog-based embodied datasets. R2H mainly includes two tasks: (1) Respond to Dialog History (RDH), which assesses the helper agent’s ability to generate informative responses based on a given dialog history, and (2) Respond during Interaction (RdI), which evaluates the effectiveness and efficiency of the response during consistent cooperation with a task performer. Furthermore, we explore two approaches to construct the navigation-helper agent, including fine-tuning a novel task-oriented multi-modal response generation model that can see and respond, named SeeRee, and employing a multi-modal large language model in a zero-shot manner. Analysis of the task and method was conducted based on both automatic benchmarking and human evaluations.

pdf bib
Aerial Vision-and-Dialog Navigation
Yue Fan | Winson Chen | Tongzhou Jiang | Chun Zhou | Yi Zhang | Xin Wang
Findings of the Association for Computational Linguistics: ACL 2023

The ability to converse with humans and follow natural language commands is crucial for intelligent unmanned aerial vehicles (a.k.a. drones). It can relieve people’s burden of holding a controller all the time, allow multitasking, and make drone control more accessible for people with disabilities or with their hands occupied. To this end, we introduce Aerial Vision-and-Dialog Navigation (AVDN), to navigate a drone via natural language conversation. We build a drone simulator with a continuous photorealistic environment and collect a new AVDN dataset of over 3k recorded navigation trajectories with asynchronous human-human dialogs between commanders and followers. The commander provides initial navigation instruction and further guidance by request, while the follower navigates the drone in the simulator and asks questions when needed. During data collection, followers’ attention on the drone’s visual observation is also recorded. Based on the AVDN dataset, we study the tasks of aerial navigation from (full) dialog history and propose an effective Human Attention Aided Transformer model (HAA-Transformer), which learns to predict both navigation waypoints and human attention.

pdf bib
Proceedings of the 3rd Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics (SpLU-RoboNLP 2023)
Aishwarya Padmakumar | Mert Inan | Yue Fan | Xin Wang | Malihe Alikhani
Proceedings of the 3rd Combined Workshop on Spatial Language Understanding and Grounded Communication for Robotics (SpLU-RoboNLP 2023)