Yun Li


2024

pdf bib
RULE: Reliable Multimodal RAG for Factuality in Medical Vision Language Models
Peng Xia | Kangyu Zhu | Haoran Li | Hongtu Zhu | Yun Li | Gang Li | Linjun Zhang | Huaxiu Yao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The recent emergence of Medical Large Vision Language Models (Med-LVLMs) has enhanced medical diagnosis. However, current Med-LVLMs frequently encounter factual issues, often generating responses that do not align with established medical facts. Retrieval-Augmented Generation (RAG), which utilizes external knowledge, can improve the factual accuracy of these models but introduces two major challenges. First, limited retrieved contexts might not cover all necessary information, while excessive retrieval can introduce irrelevant and inaccurate references, interfering with the model’s generation. Second, in cases where the model originally responds correctly, applying RAG can lead to an over-reliance on retrieved contexts, resulting in incorrect answers. To address these issues, we propose RULE, which consists of two components. First, we introduce a provably effective strategy for controlling factuality risk through the calibrated selection of the number of retrieved contexts. Second, based on samples where over-reliance on retrieved contexts led to errors, we curate a preference dataset to fine-tune the model, balancing its dependence on inherent knowledge and retrieved contexts for generation. We demonstrate the effectiveness of RAFE on three medical VQA datasets, achieving an average improvement of 20.8% in factual accuracy.

pdf bib
Exploring the Impact of Table-to-Text Methods on Augmenting LLM-based Question Answering with Domain Hybrid Data
Dehai Min | Nan Hu | Rihui Jin | Nuo Lin | Jiaoyan Chen | Yongrui Chen | Yu Li | Guilin Qi | Yun Li | Nijun Li | Qianren Wang
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 6: Industry Track)

Augmenting Large Language Models (LLMs) for Question Answering (QA) with domain specific data has attracted wide attention. However, domain data often exists in a hybrid format, including text and semi-structured tables, posing challenges for the seamless integration of information. Table-to-Text Generation is a promising solution by facilitating the transformation of hybrid data into a uniformly text-formatted corpus. Although this technique has been widely studied by the NLP community, there is currently no comparative analysis on how corpora generated by different table-to-text methods affect the performance of QA systems.In this paper, we address this research gap in two steps. First, we innovatively integrate table-to-text generation into the framework of enhancing LLM-based QA systems with domain hybrid data. Then, we utilize this framework in real-world industrial data to conduct extensive experiments on two types of QA systems (DSFT and RAG frameworks) with four representative methods: Markdown format, Template serialization, TPLM-based method, and LLM-based method. Based on the experimental results, we draw some empirical findings and explore the underlying reasons behind the success of some methods. We hope the findings of this work will provide a valuable reference for the academic and industrial communities in developing robust QA systems.

2023

pdf bib
ParaLS: Lexical Substitution via Pretrained Paraphraser
Jipeng Qiang | Kang Liu | Yun Li | Yunhao Yuan | Yi Zhu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Lexical substitution (LS) aims at finding appropriate substitutes for a target word in a sentence. Recently, LS methods based on pretrained language models have made remarkable progress, generating potential substitutes for a target word through analysis of its contextual surroundings. However, these methods tend to overlook the preservation of the sentence’s meaning when generating the substitutes. This study explores how to generate the substitute candidates from a paraphraser, as the generated paraphrases from a paraphraser contain variations in word choice and preserve the sentence’s meaning. Since we cannot directly generate the substitutes via commonly used decoding strategies, we propose two simple decoding strategies that focus on the variations of the target word during decoding. Experimental results show that our methods outperform state-of-the-art LS methods based on pre-trained language models on three benchmarks.

pdf bib
Chinese Lexical Substitution: Dataset and Method
Jipeng Qiang | Kang Liu | Ying Li | Yun Li | Yi Zhu | Yun-Hao Yuan | Xiaocheng Hu | Xiaoye Ouyang
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Existing lexical substitution (LS) benchmarks were collected by asking human annotators to think of substitutes from memory, resulting in benchmarks with limited coverage and relatively small scales. To overcome this problem, we propose a novel annotation method to construct an LS dataset based on human and machine collaboration. Based on our annotation method, we construct the first Chinese LS dataset CHNLS which consists of 33,695 instances and 144,708 substitutes, covering three text genres (News, Novel, and Wikipedia). Specifically, we first combine four unsupervised LS methods as an ensemble method to generate the candidate substitutes, and then let human annotators judge these candidates or add new ones. This collaborative process combines the diversity of machine-generated substitutes with the expertise of human annotators. Experimental results that the ensemble method outperforms other LS methods. To our best knowledge, this is the first study for the Chinese LS task.

pdf bib
Chinese Idiom Paraphrasing
Jipeng Qiang | Yang Li | Chaowei Zhang | Yun Li | Yi Zhu | Yunhao Yuan | Xindong Wu
Transactions of the Association for Computational Linguistics, Volume 11

Idioms are a kind of idiomatic expression in Chinese, most of which consist of four Chinese characters. Due to the properties of non-compositionality and metaphorical meaning, Chinese idioms are hard to be understood by children and non-native speakers. This study proposes a novel task, denoted as Chinese Idiom Paraphrasing (CIP). CIP aims to rephrase idiom-containing sentences to non-idiomatic ones under the premise of preserving the original sentence’s meaning. Since the sentences without idioms are more easily handled by Chinese NLP systems, CIP can be used to pre-process Chinese datasets, thereby facilitating and improving the performance of Chinese NLP tasks, e.g., machine translation systems, Chinese idiom cloze, and Chinese idiom embeddings. In this study, we can treat the CIP task as a special paraphrase generation task. To circumvent difficulties in acquiring annotations, we first establish a large-scale CIP dataset based on human and machine collaboration, which consists of 115,529 sentence pairs. In addition to three sequence-to-sequence methods as the baselines, we further propose a novel infill-based approach based on text infilling. The results show that the proposed method has better performance than the baselines based on the established CIP dataset.

2021

pdf bib
An Unsupervised Method for Building Sentence Simplification Corpora in Multiple Languages
Xinyu Lu | Jipeng Qiang | Yun Li | Yunhao Yuan | Yi Zhu
Findings of the Association for Computational Linguistics: EMNLP 2021

The availability of parallel sentence simplification (SS) is scarce for neural SS modelings. We propose an unsupervised method to build SS corpora from large-scale bilingual translation corpora, alleviating the need for SS supervised corpora. Our method is motivated by the following two findings: neural machine translation model usually tends to generate more high-frequency tokens and the difference of text complexity levels exists between the source and target language of a translation corpus. By taking the pair of the source sentences of translation corpus and the translations of their references in a bridge language, we can construct large-scale pseudo parallel SS data. Then, we keep these sentence pairs with a higher complexity difference as SS sentence pairs. The building SS corpora with an unsupervised approach can satisfy the expectations that the aligned sentences preserve the same meanings and have difference in text complexity levels. Experimental results show that SS methods trained by our corpora achieve the state-of-the-art results and significantly outperform the results on English benchmark WikiLarge.

2020

pdf bib
HIT: Nested Named Entity Recognition via Head-Tail Pair and Token Interaction
Yu Wang | Yun Li | Hanghang Tong | Ziye Zhu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Named Entity Recognition (NER) is a fundamental task in natural language processing. In order to identify entities with nested structure, many sophisticated methods have been recently developed based on either the traditional sequence labeling approaches or directed hypergraph structures. Despite being successful, these methods often fall short in striking a good balance between the expression power for nested structure and the model complexity. To address this issue, we present a novel nested NER model named HIT. Our proposed HIT model leverages two key properties pertaining to the (nested) named entity, including (1) explicit boundary tokens and (2) tight internal connection between tokens within the boundary. Specifically, we design (1) Head-Tail Detector based on the multi-head self-attention mechanism and bi-affine classifier to detect boundary tokens, and (2) Token Interaction Tagger based on traditional sequence labeling approaches to characterize the internal token connection within the boundary. Experiments on three public NER datasets demonstrate that the proposed HIT achieves state-of-the-art performance.

2005

pdf bib
双向考察和驗證:并列成分中心語的語義關係和CCD的名詞語義分類体系 (Bidirectional Investigation: The Semantic Relations between the Conjuncts and the Noun Taxonomy in CCD) [In Chinese]
Yunfang Wu | Sujian Li | Yun Li | Shiwen Yu
International Journal of Computational Linguistics & Chinese Language Processing, Volume 10, Number 4, December 2005: Special Issue on Selected Papers from CLSW-5

pdf bib
隱喻性成語的語義映射 (Semantic Mapping in Chinese Metaphorical Idioms) [In Chinese]
Yun Li | Sujian Li | Zhimin Wang | Yunfang Wu
International Journal of Computational Linguistics & Chinese Language Processing, Volume 10, Number 4, December 2005: Special Issue on Selected Papers from CLSW-5