Yuncheng Hua


2024

pdf bib
Let’s Negotiate! A Survey of Negotiation Dialogue Systems
Haolan Zhan | Yufei Wang | Zhuang Li | Tao Feng | Yuncheng Hua | Suraj Sharma | Lizhen Qu | Zhaleh Semnani Azad | Ingrid Zukerman | Reza Haf
Findings of the Association for Computational Linguistics: EACL 2024

Negotiation is a crucial ability in human communication. Recently, there has been a resurgent research interest in negotiation dialogue systems, whose goal is to create intelligent agents that can assist people in resolving conflicts or reaching agreements. Although there have been many explorations into negotiation dialogue systems, a systematic review of this task has not been performed to date. We aim to fill this gap by investigating recent studies in the field of negotiation dialogue systems, and covering benchmarks, evaluations and methodologies within the literature. We also discuss potential future directions, including multi-modal, multi-party and cross-cultural negotiation scenarios. Our goal is to provide the community with a systematic overview of negotiation dialogue systems and to inspire future research.

pdf bib
RENOVI: A Benchmark Towards Remediating Norm Violations in Socio-Cultural Conversations
Haolan Zhan | Zhuang Li | Xiaoxi Kang | Tao Feng | Yuncheng Hua | Lizhen Qu | Yi Ying | Mei Rianto Chandra | Kelly Rosalin | Jureynolds Jureynolds | Suraj Sharma | Shilin Qu | Linhao Luo | Ingrid Zukerman | Lay-Ki Soon | Zhaleh Semnani Azad | Reza Haf
Findings of the Association for Computational Linguistics: NAACL 2024

Norm violations occur when individuals fail to conform to culturally accepted behaviors, which may lead to potential conflicts. Remediating norm violations requires social awareness and cultural sensitivity of the nuances at play. To equip interactive AI systems with a remediation ability, we offer ReNoVi — a large-scale corpus of 9,258 multi-turn dialogues annotated with social norms, as well as define a sequence of tasks to help understand and remediate norm violations step by step. ReNoVi consists of two parts: 512 human-authored dialogues (real data), and 8,746 synthetic conversations generated by ChatGPT through prompt learning. While collecting sufficient human-authored data is costly, synthetic conversations provide suitable amounts of data to help mitigate the scarcity of training data, as well as the chance to assess the alignment between LLMs and humans in the awareness of social norms. We thus harness the power of ChatGPT to generate synthetic training data for our task. To ensure the quality of both human-authored and synthetic data, we follow a quality control protocol during data collection. Our experimental results demonstrate the importance of remediating norm violations in socio-cultural conversations, as well as the improvement in performance obtained from synthetic data.

2020

pdf bib
Few-Shot Complex Knowledge Base Question Answering via Meta Reinforcement Learning
Yuncheng Hua | Yuan-Fang Li | Gholamreza Haffari | Guilin Qi | Tongtong Wu
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Complex question-answering (CQA) involves answering complex natural-language questions on a knowledge base (KB). However, the conventional neural program induction (NPI) approach exhibits uneven performance when the questions have different types, harboring inherently different characteristics, e.g., difficulty level. This paper proposes a meta-reinforcement learning approach to program induction in CQA to tackle the potential distributional bias in questions. Our method quickly and effectively adapts the meta-learned programmer to new questions based on the most similar questions retrieved from the training data. The meta-learned policy is then used to learn a good programming policy, utilizing the trial trajectories and their rewards for similar questions in the support set. Our method achieves state-of-the-art performance on the CQA dataset (Saha et al., 2018) while using only five trial trajectories for the top-5 retrieved questions in each support set, and meta-training on tasks constructed from only 1% of the training set. We have released our code at https://github.com/DevinJake/MRL-CQA.