Abelardo Carlos Martínez Lorenzo

Also published as: Abelardo Carlos Martinez Lorenzo


2024

pdf bib
Mitigating Data Scarcity in Semantic Parsing across Languages with the Multilingual Semantic Layer and its Dataset
Abelardo Carlos Martinez Lorenzo | Pere-Lluís Huguet Cabot | Karim Ghonim | Lu Xu | Hee-Soo Choi | Alberte Fernández-Castro | Roberto Navigli
Findings of the Association for Computational Linguistics: ACL 2024

Data scarcity is a prevalent challenge in the era of Large Language Models (LLMs). The insatiable hunger of LLMs for large corpora becomes even more pronounced when dealing with non-English and low-resource languages. The issue is particularly exacerbated in Semantic Parsing (SP), i.e. the task of converting text into a formal representation. The complexity of semantic formalisms makes training human annotators and subsequent data annotation unfeasible on a large scale, especially across languages. To mitigate this, we first introduce the Multilingual Semantic Layer (MSL), a conceptual evolution of previous formalisms, which decouples from disambiguation and external inventories and simplifies the task. MSL provides the necessary tools to encode the meaning across languages, paving the way for developing a high-quality semantic parsing dataset across different languages in a semi-automatic strategy. Subsequently, we manually refine a portion of this dataset and fine-tune GPT-3.5 to propagate these refinements across the dataset. Then, we manually annotate 1,100 sentences in eleven languages, including low-resource ones. Finally, we assess our dataset’s quality, showcasing the performance gap reduction across languages in Semantic Parsing.

pdf bib
MOSAICo: a Multilingual Open-text Semantically Annotated Interlinked Corpus
Simone Conia | Edoardo Barba | Abelardo Carlos Martinez Lorenzo | Pere-Lluís Huguet Cabot | Riccardo Orlando | Luigi Procopio | Roberto Navigli
Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Several Natural Language Understanding (NLU) tasks focus on linking text to explicit knowledge, including Word Sense Disambiguation, Semantic Role Labeling, Semantic Parsing, and Relation Extraction. In addition to the importance of connecting raw text with explicit knowledge bases, the integration of such carefully curated knowledge into deep learning models has been shown to be beneficial across a diverse range of applications, including Language Modeling and Machine Translation. Nevertheless, the scarcity of semantically-annotated corpora across various tasks and languages limits the potential advantages significantly. To address this issue, we put forward MOSAICo, the first endeavor aimed at equipping the research community with the key ingredients to model explicit semantic knowledge at a large scale, providing hundreds of millions of silver yet high-quality annotations for four NLU tasks across five languages. We describe the creation process of MOSAICo, demonstrate its quality and variety, and analyze the interplay between different types of semantic information. MOSAICo, available at https://github.com/SapienzaNLP/mosaico, aims to drop the requirement of closed, licensed datasets and represents a step towards a level playing field across languages and tasks in NLU.

pdf bib
Efficient AMR Parsing with CLAP: Compact Linearization with an Adaptable Parser
Abelardo Carlos Martinez Lorenzo | Roberto Navigli
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Sequence-to-sequence models have become the de facto standard for Abstract Meaning Representation (AMR) parsing due to their high-quality performance. However, these systems face efficiency challenges because of their large model size and computational time, which limit their accessibility within the research community. This paper aims to break down these barriers by introducing a novel linearization and system that significantly enhances the efficiency and accessibility of previous AMR parsers. First, we propose our novel Compact linearization that simplifies encoding, thereby reducing the number of tokens by between 40% and 50%. Second, we present CLAP, an innovative modular system that maintains the model’s high performance while achieving remarkable 80% reduction in training and inference times. Furthermore, CLAP is compatible with multiple autoregressive Language Models (LM) and tokenizers, such as BART, T5, and others. These advancements underscore the importance of optimizing sequence-to-sequence models in AMR parsing, thus democratizing access to high-quality semantic analysis. Our code is publicly available at https://github.com/SapienzaNLP/clap/.

2023

pdf bib
AMRs Assemble! Learning to Ensemble with Autoregressive Models for AMR Parsing
Abelardo Carlos Martínez Lorenzo | Pere Lluís Huguet Cabot | Roberto Navigli
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

In this paper, we examine the current state-of-the-art in AMR parsing, which relies on ensemble strategies by merging multiple graph predictions. Our analysis reveals that the present models often violate AMR structural constraints. To address this issue, we develop a validation method, and show how ensemble models can exploit SMATCH metric weaknesses to obtain higher scores, but sometimes result in corrupted graphs. Additionally, we highlight the demanding need to compute the SMATCH score among all possible predictions. To overcome these challenges, we propose two novel ensemble strategies based on Transformer models, improving robustness to structural constraints, while also reducing the computational time. Our methods provide new insights for enhancing AMR parsers and metrics. Our code is available at [https://www.github.com/babelscape/AMRs-Assemble](https://www.github.com/babelscape/AMRs-Assemble).

pdf bib
Cross-lingual AMR Aligner: Paying Attention to Cross-Attention
Abelardo Carlos Martínez Lorenzo | Pere Lluís Huguet Cabot | Roberto Navigli
Findings of the Association for Computational Linguistics: ACL 2023

This paper introduces a novel aligner for Abstract Meaning Representation (AMR) graphs that can scale cross-lingually, and is thus capable of aligning units and spans in sentences of different languages. Our approach leverages modern Transformer-based parsers, which inherently encode alignment information in their cross-attention weights, allowing us to extract this information during parsing. This eliminates the need for English-specific rules or the Expectation Maximization (EM) algorithm that have been used in previous approaches. In addition, we propose a guided supervised method using alignment to further enhance the performance of our aligner. We achieve state-of-the-art results in the benchmarks for AMR alignment and demonstrate our aligner’s ability to obtain them across multiple languages. Our code will be available at [https://www.github.com/babelscape/AMR-alignment](https://www.github.com/babelscape/AMR-alignment).

pdf bib
Incorporating Graph Information in Transformer-based AMR Parsing
Pavlo Vasylenko | Pere Lluís Huguet Cabot | Abelardo Carlos Martínez Lorenzo | Roberto Navigli
Findings of the Association for Computational Linguistics: ACL 2023

Abstract Meaning Representation (AMR) is a Semantic Parsing formalism that aims at providing a semantic graph abstraction representing a given text. Current approaches are based on autoregressive language models such as BART or T5, fine-tuned through Teacher Forcing to obtain a linearized version of the AMR graph from a sentence. In this paper, we present LeakDistill, a model and method that explores a modification to the Transformer architecture, using structural adapters to explicitly incorporate graph information into the learned representations and improve AMR parsing performance. Our experiments show how, by employing word-to-node alignment to embed graph structural information into the encoder at training time, we can obtain state-of-the-art AMR parsing through self-knowledge distillation, even without the use of additional data. We release the code at [http://www.github.com/sapienzanlp/LeakDistill](http://www.github.com/sapienzanlp/LeakDistill).

2022

pdf bib
Fully-Semantic Parsing and Generation: the BabelNet Meaning Representation
Abelardo Carlos Martínez Lorenzo | Marco Maru | Roberto Navigli
Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

A language-independent representation of meaning is one of the most coveted dreams in Natural Language Understanding. With this goal in mind, several formalisms have been proposed as frameworks for meaning representation in Semantic Parsing. And yet, the dependencies these formalisms share with respect to language-specific repositories of knowledge make the objective of closing the gap between high- and low-resourced languages hard to accomplish. In this paper, we present the BabelNet Meaning Representation (BMR), an interlingual formalism that abstracts away from language-specific constraints by taking advantage of the multilingual semantic resources of BabelNet and VerbAtlas. We describe the rationale behind the creation of BMR and put forward BMR 1.0, a dataset labeled entirely according to the new formalism. Moreover, we show how BMR is able to outperform previous formalisms thanks to its fully-semantic framing, which enables top-notch multilingual parsing and generation. We release the code at https://github.com/SapienzaNLP/bmr.