Image clustering divides a collection of images into meaningful groups, typically interpreted post-hoc via human-given annotations. Those are usually in the form of text, begging the question of using text as an abstraction for image clustering. Current image clustering methods, however, neglect the use of generated textual descriptions. We, therefore, propose Text-Guided Image Clustering, i.e., generating text using image captioning and visual question-answering (VQA) models and subsequently clustering the generated text. Further, we introduce a novel approach to inject task- or domain knowledge for clustering by prompting VQA models. Across eight diverse image clustering datasets, our results show that the obtained text representations often outperform image features. Additionally, we propose a counting-based cluster explainability method. Our evaluations show that the derived keyword-based explanations describe clusters better than the respective cluster accuracy suggests. Overall, this research challenges traditional approaches and paves the way for a paradigm shift in image clustering, using generated text.
Much of the success of modern language models depends on finding a suitable prompt to instruct the model. Until now, it has been largely unknown how variations in the linguistic expression of prompts affect these models. This study systematically and empirically evaluates which linguistic features influence models through paraphrase types, i.e., different linguistic changes at particular positions. We measure behavioral changes for five models across 120 tasks and six families of paraphrases (i.e., morphology, syntax, lexicon, lexico-syntax, discourse, and others). We also control for other prompt engineering factors (e.g., prompt length, lexical diversity, and proximity to training data). Our results show a potential for language models to improve tasks when their prompts are adapted in specific paraphrase types (e.g., 6.7% median gain in Mixtral 8x7B; 5.5% in LLaMA 3 8B). In particular, changes in morphology and lexicon, i.e., the vocabulary used, showed promise in improving prompts. These findings contribute to developing more robust language models capable of handling variability in linguistic expression.
Meeting summarization is crucial in digital communication, but existing solutions struggle with salience identification to generate personalized, workable summaries, and context understanding to fully comprehend the meetings’ content.Previous attempts to address these issues by considering related supplementary resources (e.g., presentation slides) alongside transcripts are hindered by models’ limited context sizes and handling the additional complexities of the multi-source tasks, such as identifying relevant information in additional files and seamlessly aligning it with the meeting content.This work explores multi-source meeting summarization considering supplementary materials through a three-stage large language model approach: identifying transcript passages needing additional context, inferring relevant details from supplementary materials and inserting them into the transcript, and generating a summary from this enriched transcript.Our multi-source approach enhances model understanding, increasing summary relevance by ~9% and producing more content-rich outputs.We introduce a personalization protocol that extracts participant characteristics and tailors summaries accordingly, improving informativeness by ~10%.This work further provides insights on performance-cost trade-offs across four leading model families, including edge-device capable options.Our approach can be extended to similar complex generative tasks benefitting from additional resources and personalization, such as dialogue systems and action planning.
Meeting summarization has become a critical task considering the increase in online interactions. Despite new techniques being proposed regularly, the evaluation of meeting summarization techniques relies on metrics not tailored to capture meeting-specific errors, leading to ineffective assessment. This paper explores what established automatic metrics capture and the errors they mask by correlating metric scores with human evaluations across a comprehensive error taxonomy. We start by reviewing the literature on English meeting summarization to identify key challenges, such as speaker dynamics and contextual turn-taking, and error types, including missing information and linguistic inaccuracy, concepts previously loosely defined in the field. We then examine the relationship between these challenges and errors using human annotated transcripts and summaries from encoder-decoder-based and autoregressive Transformer models on the QMSum dataset. Experiments reveal that different model architectures respond variably to the challenges, resulting in distinct links between challenges and errors. Current established metrics struggle to capture the observable errors, showing weak to moderate correlations, with a third of the correlations indicating error masking. Only a subset of metrics accurately reacts to specific errors, while most correlations show either unresponsiveness or failure to reflect the error’s impact on summary quality.
Media bias detection poses a complex, multifaceted problem traditionally tackled using single-task models and small in-domain datasets, consequently lacking generalizability. To address this, we introduce MAGPIE, a large-scale multi-task pre-training approach explicitly tailored for media bias detection. To enable large-scale pre-training, we construct Large Bias Mixture (LBM), a compilation of 59 bias-related tasks. MAGPIE outperforms previous approaches in media bias detection on the Bias Annotation By Experts (BABE) dataset, with a relative improvement of 3.3% F1-score. Furthermore, using a RoBERTa encoder, we show that MAGPIE needs only 15% of fine-tuning steps compared to single-task approaches. We provide insight into task learning interference and show that sentiment analysis and emotion detection help learning of all other tasks, and scaling the number of tasks leads to the best results. MAGPIE confirms that MTL is a promising approach for addressing media bias detection, enhancing the accuracy and efficiency of existing models. Furthermore, LBM is the first available resource collection focused on media bias MTL.
We present CiteAssist, a system to automate the generation of BibTeX entries for preprints, streamlining the process of bibliographic annotation. Our system extracts metadata, such as author names, titles, publication dates, and keywords, to create standardized annotations within the document. CiteAssist automatically attaches the BibTeX citation to the end of a PDF and links it on the first page of the document so other researchers gain immediate access to the correct citation of the article. This method promotes platform flexibility by ensuring that annotations remain accessible regardless of the repository used to publish or access the preprint. The annotations remain available even if the preprint is viewed externally to CiteAssist. Additionally, the system adds relevant related papers based on extracted keywords to the preprint, providing researchers with additional publications besides those in related work for further reading. Researchers can enhance their preprints organization and reference management workflows through a free and publicly available web interface.
We tackle the problem of neural machine translation of mathematical formulae between ambiguous presentation languages and unambiguous content languages. Compared to neural machine translation on natural language, mathematical formulae have a much smaller vocabulary and much longer sequences of symbols, while their translation requires extreme precision to satisfy mathematical information needs. In this work, we perform the tasks of translating from LaTeX to Mathematica as well as from LaTeX to semantic LaTeX. While recurrent, recursive, and transformer networks struggle with preserving all contained information, we find that convolutional sequence-to-sequence networks achieve 95.1% and 90.7% exact matches, respectively.
Current approaches in paraphrase generation and detection heavily rely on a single general similarity score, ignoring the intricate linguistic properties of language. This paper introduces two new tasks to address this shortcoming by considering paraphrase types - specific linguistic perturbations at particular text positions. We name these tasks Paraphrase Type Generation and Paraphrase Type Detection. Our results suggest that while current techniques perform well in a binary classification scenario, i.e., paraphrased or not, the inclusion of fine-grained paraphrase types poses a significant challenge. While most approaches are good at generating and detecting general semantic similar content, they fail to understand the intrinsic linguistic variables they manipulate. Models trained in generating and identifying paraphrase types also show improvements in tasks without them. In addition, scaling these models further improves their ability to understand paraphrase types. We believe paraphrase types can unlock a new paradigm for developing paraphrase models and solving tasks in the future.
Natural Language Processing (NLP) is poised to substantially influence the world. However, significant progress comes hand-in-hand with substantial risks. Addressing them requires broad engagement with various fields of study. Yet, little empirical work examines the state of such engagement (past or current). In this paper, we quantify the degree of influence between 23 fields of study and NLP (on each other). We analyzed ~77k NLP papers, ~3.1m citations from NLP papers to other papers, and ~1.8m citations from other papers to NLP papers. We show that, unlike most fields, the cross-field engagement of NLP, measured by our proposed Citation Field Diversity Index (CFDI), has declined from 0.58 in 1980 to 0.31 in 2022 (an all-time low). In addition, we find that NLP has grown more insular—citing increasingly more NLP papers and having fewer papers that act as bridges between fields. NLP citations are dominated by computer science; Less than 8% of NLP citations are to linguistics, and less than 3% are to math and psychology. These findings underscore NLP’s urgent need to reflect on its engagement with various fields.
The recent success of large language models for text generation poses a severe threat to academic integrity, as plagiarists can generate realistic paraphrases indistinguishable from original work.However, the role of large autoregressive models in generating machine-paraphrased plagiarism and their detection is still incipient in the literature.This work explores T5 and GPT3 for machine-paraphrase generation on scientific articles from arXiv, student theses, and Wikipedia.We evaluate the detection performance of six automated solutions and one commercial plagiarism detection software and perform a human study with 105 participants regarding their detection performance and the quality of generated examples.Our results suggest that large language models can rewrite text humans have difficulty identifying as machine-paraphrased (53% mean acc.).Human experts rate the quality of paraphrases generated by GPT-3 as high as original texts (clarity 4.0/5, fluency 4.2/5, coherence 3.8/5).The best-performing detection model (GPT-3) achieves 66% F1-score in detecting paraphrases.We make our code, data, and findings publicly available to facilitate the development of detection solutions.
Learning scientific document representations can be substantially improved through contrastive learning objectives, where the challenge lies in creating positive and negative training samples that encode the desired similarity semantics. Prior work relies on discrete citation relations to generate contrast samples. However, discrete citations enforce a hard cut-off to similarity. This is counter-intuitive to similarity-based learning and ignores that scientific papers can be very similar despite lacking a direct citation - a core problem of finding related research. Instead, we use controlled nearest neighbor sampling over citation graph embeddings for contrastive learning. This control allows us to learn continuous similarity, to sample hard-to-learn negatives and positives, and also to avoid collisions between negative and positive samples by controlling the sampling margin between them. The resulting method SciNCL outperforms the state-of-the-art on the SciDocs benchmark. Furthermore, we demonstrate that it can train (or tune) language models sample-efficiently and that it can be combined with recent training-efficient methods. Perhaps surprisingly, even training a general-domain language model this way outperforms baselines pretrained in-domain.
Despite the recent success of multi-task learning and pre-finetuning for natural language understanding, few works have studied the effects of task families on abstractive text summarization. Task families are a form of task grouping during the pre-finetuning stage to learn common skills, such as reading comprehension. To close this gap, we analyze the influence of multi-task learning strategies using task families for the English abstractive text summarization task. We group tasks into one of three strategies, i.e., sequential, simultaneous, and continual multi-task learning, and evaluate trained models through two downstream tasks. We find that certain combinations of task families (e.g., advanced reading comprehension and natural language inference) positively impact downstream performance. Further, we find that choice and combinations of task families influence downstream performance more than the training scheme, supporting the use of task families for abstractive text
DBLP is the largest open-access repository of scientific articles on computer science and provides metadata associated with publications, authors, and venues. We retrieved more than 6 million publications from DBLP and extracted pertinent metadata (e.g., abstracts, author affiliations, citations) from the publication texts to create the DBLP Discovery Dataset (D3). D3 can be used to identify trends in research activity, productivity, focus, bias, accessibility, and impact of computer science research. We present an initial analysis focused on the volume of computer science research (e.g., number of papers, authors, research activity), trends in topics of interest, and citation patterns. Our findings show that computer science is a growing research field (15% annually), with an active and collaborative researcher community. While papers in recent years present more bibliographical entries in comparison to previous decades, the average number of citations has been declining. Investigating papers’ abstracts reveals that recent topic trends are clearly reflected in D3. Finally, we list further applications of D3 and pose supplemental research questions. The D3 dataset, our findings, and source code are publicly available for research purposes.
Established cross-document coreference resolution (CDCR) datasets contain event-centric coreference chains of events and entities with identity relations. These datasets establish strict definitions of the coreference relations across related tests but typically ignore anaphora with more vague context-dependent loose coreference relations. In this paper, we qualitatively and quantitatively compare the annotation schemes of ECB+, a CDCR dataset with identity coreference relations, and NewsWCL50, a CDCR dataset with a mix of loose context-dependent and strict coreference relations. We propose a phrasing diversity metric (PD) that encounters for the diversity of full phrases unlike the previously proposed metrics and allows to evaluate lexical diversity of the CDCR datasets in a higher precision. The analysis shows that coreference chains of NewsWCL50 are more lexically diverse than those of ECB+ but annotating of NewsWCL50 leads to the lower inter-coder reliability. We discuss the different tasks that both CDCR datasets create for the CDCR models, i.e., lexical disambiguation and lexical diversity. Finally, to ensure generalizability of the CDCR models, we propose a direction for CDCR evaluation that combines CDCR datasets with multiple annotation schemes that focus of various properties of the coreference chains.
Media coverage has a substantial effect on the public perception of events. Nevertheless, media outlets are often biased. One way to bias news articles is by altering the word choice. The automatic identification of bias by word choice is challenging, primarily due to the lack of a gold standard data set and high context dependencies. This paper presents BABE, a robust and diverse data set created by trained experts, for media bias research. We also analyze why expert labeling is essential within this domain. Our data set offers better annotation quality and higher inter-annotator agreement than existing work. It consists of 3,700 sentences balanced among topics and outlets, containing media bias labels on the word and sentence level. Based on our data, we also introduce a way to detect bias-inducing sentences in news articles automatically. Our best performing BERT-based model is pre-trained on a larger corpus consisting of distant labels. Fine-tuning and evaluating the model on our proposed supervised data set, we achieve a macro F1-score of 0.804, outperforming existing methods.
Traditional document similarity measures provide a coarse-grained distinction between similar and dissimilar documents. Typically, they do not consider in what aspects two documents are similar. This limits the granularity of applications like recommender systems that rely on document similarity. In this paper, we extend similarity with aspect information by performing a pairwise document classification task. We evaluate our aspect-based document similarity approach for research papers. Paper citations indicate the aspect-based similarity, i.e., the title of a section in which a citation occurs acts as a label for the pair of citing and cited paper. We apply a series of Transformer models such as RoBERTa, ELECTRA, XLNet, and BERT variations and compare them to an LSTM baseline. We perform our experiments on two newly constructed datasets of 172,073 research paper pairs from the ACL Anthology and CORD-19 corpus. According to our results, SciBERT is the best performing system with F1-scores of up to 0.83. A qualitative analysis validates our quantitative results and indicates that aspect-based document similarity indeed leads to more fine-grained recommendations.