The High Performance Language Technologies (HPLT) project is a 3-year EU-funded project that started in September 2022. It aims to deliver free, sustainable, and reusable datasets, models, and workflows at scale using high-performance computing. We describe the first results of the project. The data release includes monolingual data in 75 languages at 5.6T tokens and parallel data in 18 language pairs at 96M pairs, derived from 1.8 petabytes of web crawls. Building upon automated and transparent pipelines, the first machine translation (MT) models as well as large language models (LLMs) have been trained and released. Multiple data processing tools and pipelines have also been made public.
This paper describes the University of Edinburgh’s submission to the AmericasNLP 2024 shared task on the translation of Spanish into 11 indigenous American languages. We explore the ability of multilingual Large Language Models (LLMs) to model low-resource languages by continued pre-training with LoRA, and conduct instruction fine-tuning using a variety of datasets, demonstrating that this improves LLM performance. Furthermore, we demonstrate the efficacy of checkpoint averaging alongside decoding techniques like beam search and sampling, resulting in further improvements. We participate in all 11 translation directions.
Despite the recent popularity of Large Language Models (LLMs) in Machine Translation (MT), their performance in low-resource languages (LRLs) still lags significantly behind Neural Machine Translation (NMT) models. In this work, we explore what it would take to adapt LLMs for the low-resource setting. Particularly, we re-examine the role of two factors: a) the importance and application of parallel data, and b) diversity in Supervised Fine-Tuning (SFT). Recently, parallel data has seen reduced use in adapting LLMs for MT, while data diversity has been embraced to promote transfer across languages and tasks. However, for low-resource LLM-MT, we show that the opposite is true for both considerations: a) parallel data is critical during both pre-training and SFT; b) diversity tends to cause interference instead of transfer. Our experiments with three LLMs across two low-resourced language groups—Indigenous American and North-East Indian—reveal consistent trends, underscoring the generalizability of our findings. We believe these insights will be valuable for scaling to massively multilingual LLM-MT models that can effectively serve LRLs.
We propose two methods to make unsupervised domain adaptation (UDA) more parameter efficient using adapters – small bottleneck layers interspersed with every layer of the large-scale pre-trained language model (PLM). The first method deconstructs UDA into a two-step process: first by adding a domain adapter to learn domain-invariant information and then by adding a task adapter that uses domain-invariant information to learn task representations in the source domain. The second method jointly learns a supervised classifier while reducing the divergence measure. Compared to strong baselines, our simple methods perform well in natural language inference (MNLI) and the cross-domain sentiment classification task. We even outperform unsupervised domain adaptation methods such as DANN and DSN in sentiment classification, and we are within 0.85% F1 for natural language inference task, by fine-tuning only a fraction of the full model parameters. We release our code at this URL.
The robustness of pretrained language models(PLMs) is generally measured using performance drops on two or more domains. However, we do not yet understand the inherent robustness achieved by contributions from different layers of a PLM. We systematically analyze the robustness of these representations layer by layer from two perspectives. First, we measure the robustness of representations by using domain divergence between two domains. We find that i) Domain variance increases from the lower to the upper layers for vanilla PLMs; ii) Models continuously pretrained on domain-specific data (DAPT)(Gururangan et al., 2020) exhibit more variance than their pretrained PLM counterparts; and that iii) Distilled models (e.g., DistilBERT) also show greater domain variance. Second, we investigate the robustness of representations by analyzing the encoded syntactic and semantic information using diagnostic probes. We find that similar layers have similar amounts of linguistic information for data from an unseen domain.
The scale, variety, and quantity of publicly-available NLP datasets has grown rapidly as researchers propose new tasks, larger models, and novel benchmarks. Datasets is a community library for contemporary NLP designed to support this ecosystem. Datasets aims to standardize end-user interfaces, versioning, and documentation, while providing a lightweight front-end that behaves similarly for small datasets as for internet-scale corpora. The design of the library incorporates a distributed, community-driven approach to adding datasets and documenting usage. After a year of development, the library now includes more than 650 unique datasets, has more than 250 contributors, and has helped support a variety of novel cross-dataset research projects and shared tasks. The library is available at https://github.com/huggingface/datasets.