Changsheng Zhao


2024

pdf bib
LLM-QAT: Data-Free Quantization Aware Training for Large Language Models
Zechun Liu | Barlas Oguz | Changsheng Zhao | Ernie Chang | Pierre Stock | Yashar Mehdad | Yangyang Shi | Raghuraman Krishnamoorthi | Vikas Chandra
Findings of the Association for Computational Linguistics: ACL 2024

Several post-training quantization methods have been applied to large language models (LLMs), and have been shown to perform well down to 8-bits. We find that these methods break down at lower bit precision, and investigate quantization-aware training for LLMs (LLM-QAT) to push quantization levels even further. We propose a data-free distillation method that leverages generations produced by the pre-trained model, which better preserves the original output distribution and allows quantizing any generative model independent of its training data, similar to post-training quantization methods. In addition to quantizing weights and activations, we also quantize the KV cache, which is critical for increasing throughput and supporting long sequence dependencies at current model sizes. We experiment with LLaMA models of sizes 7B, 13B, and 30B, at quantization levels down to 4-bits. We observe large improvements over training-free methods, especially in the low-bit settings.

2023

pdf bib
Towards Zero-Shot Multilingual Transfer for Code-Switched Responses
Ting-Wei Wu | Changsheng Zhao | Ernie Chang | Yangyang Shi | Pierce Chuang | Vikas Chandra | Biing Juang
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Recent task-oriented dialog systems have had great success in building English-based personal assistants, but extending these systems to a global audience is challenging due to the need for annotated data in the target language. An alternative approach is to leverage existing data in a high-resource language to enable cross-lingual transfer in low-resource language models. However, this type of transfer has not been widely explored in natural language response generation. In this research, we investigate the use of state-of-the-art multilingual models such as mBART and T5 to facilitate zero-shot and few-shot transfer of code-switched responses. We propose a new adapter-based framework that allows for efficient transfer by learning task-specific representations and encapsulating source and target language representations. Our framework is able to successfully transfer language knowledge even when the target language corpus is limited. We present both quantitative and qualitative analyses to evaluate the effectiveness of our approach.

pdf bib
Revisiting Sample Size Determination in Natural Language Understanding
Ernie Chang | Muhammad Hassan Rashid | Pin-Jie Lin | Changsheng Zhao | Vera Demberg | Yangyang Shi | Vikas Chandra
Findings of the Association for Computational Linguistics: ACL 2023

Knowing exactly how many data points need to be labeled to achieve a certain model performance is a hugely beneficial step towards reducing the overall budgets for annotation. It pertains to both active learning and traditional data annotation, and is particularly beneficial for low resource scenarios. Nevertheless, it remains a largely under-explored area of research in NLP. We therefore explored various techniques for estimating the training sample size necessary to achieve a targeted performance value. We derived a simple yet effective approach to predict the maximum achievable model performance based on small amount of training samples – which serves as an early indicator during data annotation for data quality and sample size determination. We performed ablation studies on four language understanding tasks, and showed that the proposed approach allows us to forecast model performance within a small margin of mean absolute error (~0.9%) with only 10% data.

2021

pdf bib
Hyperparameter-free Continuous Learning for Domain Classification in Natural Language Understanding
Ting Hua | Yilin Shen | Changsheng Zhao | Yen-Chang Hsu | Hongxia Jin
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Domain classification is the fundamental task in natural language understanding (NLU), which often requires fast accommodation to new emerging domains. This constraint makes it impossible to retrain all previous domains, even if they are accessible to the new model. Most existing continual learning approaches suffer from low accuracy and performance fluctuation, especially when the distributions of old and new data are significantly different. In fact, the key real-world problem is not the absence of old data, but the inefficiency to retrain the model with the whole old dataset. Is it potential to utilize some old data to yield high accuracy and maintain stable performance, while at the same time, without introducing extra hyperparameters? In this paper, we proposed a hyperparameter-free continual learning model for text data that can stably produce high performance under various environments. Specifically, we utilize Fisher information to select exemplars that can “record” key information of the original model. Also, a novel scheme called dynamical weight consolidation is proposed to enable hyperparameter-free learning during the retrain process. Extensive experiments demonstrate baselines provide fluctuated performance which makes them useless in practice. On the contrary, our proposed model significantly and consistently outperforms the best state-of-the-art method by up to 20% in average accuracy, and each of its component contributes effectively to overall performance.