This work focuses on the task of query-based meeting summarization in which the summary of a context (meeting transcript) is generated in response to a specific query. When using Large Language Models (LLMs) for this task, a new call to the LLM inference endpoint/API is required for each new query even if the context stays the same. However, repeated calls to the LLM inference endpoints would significantly increase the costs of using them in production, making LLMs impractical for many real-world use cases. To address this problem, in this paper, we investigate whether combining the queries for the same input context in a single prompt to minimize repeated calls can be successfully used in meeting summarization. In this regard, we conduct extensive experiments by comparing the performance of various popular LLMs: GPT-4, Gemini, Claude-3, LLaMA2, Mistral, Phi-3, and Qwen-2 in single-query and multi-query settings. We observe that the capability to reliably generate the response in the expected format is usually limited to closedsource LLMs, with most open-source LLMs lagging behind (except Mistral). We conclude that multi-query prompting could be useful to optimize the inference costs by significantly reducing calls to the inference endpoints/APIs for the task of meeting summarization.
Large Language Models (LLMs) have demonstrated impressive capabilities to solve a wide range of tasks without being explicitly fine-tuned on task-specific datasets. However, deploying LLMs in the real world is not trivial, as it requires substantial computing resources. In this paper, we investigate whether smaller, Compact LLMs are a good alternative to the comparatively Larger LLMs to address significant costs associated with utilizing LLMs in the real world. In this regard, we study the meeting summarization task in a real-world industrial environment and conduct extensive experiments by comparing the performance of fine-tuned compact LLMs (FLAN-T5, TinyLLaMA, LiteLLaMA, etc.) with zero-shot larger LLMs (LLaMA-2, GPT-3.5, PaLM-2). We observe that most smaller LLMs, even after fine-tuning, fail to outperform larger zero-shot LLMs in meeting summarization datasets. However, a notable exception is FLAN-T5 (780M parameters), which achieves performance on par with zero-shot Larger LLMs (from 7B to above 70B parameters), while being significantly smaller. This makes compact LLMs like FLAN-T5 a suitable cost-efficient LLM for real-world industrial deployment.
This paper describes our system used in the SemEval-2023 Task12: Sentiment Analysis for Low-resource African Languages using Twit- ter Dataset (Muhammad et al., 2023c). The AfriSenti-SemEval Shared Task 12 is based on a collection of Twitter datasets in 14 African languages for sentiment classification. It con- sists of three sub-tasks. Task A is a monolin- gual sentiment classification which covered 12 African languages. Task B is a multilingual sen- timent classification which combined training data from Task A (12 African languages). Task C is a zero-shot sentiment classification. We uti- lized various strategies, including monolingual training, multilingual mixed training, and trans- lation technology, and proposed a weighted vot- ing method that combined the results of differ- ent strategies. Substantially, in the monolingual subtask, our system achieved Top-1 in two lan- guages (Yoruba and Twi) and Top-2 in four languages (Nigerian Pidgin, Algerian Arabic, and Swahili, Multilingual). In the multilingual subtask, Our system achived Top-2 in publish leaderBoard.
This study presents a systematic method for analyzing the level of intimacy in tweets across ten different languages, using multi-task learning for SemEval 2023 Task 9: Multilingual Tweet Intimacy Analysis. The system begins with the utilization of the official training data, and then we experiment with different fine-tuning tricks and effective strategies, such as data augmentation, multi-task learning, etc. Through additional experiments, the approach is shown to be effective for the task. To enhance the model’s robustness, different transformer-based language models and some widely-used plug-and-play priors are incorporated into our system. Our final submission achieved a Pearson R of 0.6160 for the intimacy score on the official test set, placing us at the top of the leader board among 45 teams.
In recent years, the utilization of Artificial Intelligence (AI) in the contact center industry is on the rise. One area where AI can have a significant impact is in the coaching of contact center agents. By analyzing call transcripts, AI can quickly determine which calls are most relevant for coaching purposes, and provide relevant feedback and insights to the contact center manager or supervisor. In this paper, we present “AI Coach Assis”, which leverages the pre-trained transformer-based language models to determine whether a given call is coachable or not based on the quality assurance (QA) queries/questions asked by the contact center managers or supervisors. The system was trained and evaluated on a large dataset collected from real-world contact centers and provides an efficient and effective way to determine which calls are most relevant for coaching purposes. Extensive experimental evaluation demonstrates the potential of AI Coach Assist to improve the coaching process, resulting in enhancing the performance of contact center agents.
This paper studies how to effectively build meeting summarization systems for real-world usage using large language models (LLMs). For this purpose, we conduct an extensive evaluation and comparison of various closed-source and open-source LLMs, namely, GPT-4, GPT-3.5, PaLM-2, and LLaMA-2. Our findings reveal that most closed-source LLMs are generally better in terms of performance. However, much smaller open-source models like LLaMA-2 (7B and 13B) could still achieve performance comparable to the large closed-source models even in zero-shot scenarios. Considering the privacy concerns of closed-source models for only being accessible via API, alongside the high cost associated with using fine-tuned versions of the closed-source models, the opensource models that can achieve competitive performance are more advantageous for industrial use. Balancing performance with associated costs and privacy concerns, the LLaMA-2-7B model looks more promising for industrial usage. In sum, this paper offers practical insights on using LLMs for real-world business meeting summarization, shedding light on the trade-offs between performance and cost.
In recent years, large language models (LLMs) have drawn significant attention due to their impressive emergent capabilities that were not observed in earlier language models. One emerging area where LLMs have been widely used in recent times is the utilization of LLMs as the evaluator of the texts generated by various generative models. In this paper, we also explore the possibility of whether LLMs are reliable in assessing the factual consistency of summaries generated by text generation models. We first propose a new approach to evaluate the factuality score using LLMs by utilizing the same LLM to perform all steps in the question-answering-based factuality scoring pipeline. Subsequently, we study the performance of various LLMs to directly score the factuality. Our evaluation is conducted in traditional benchmarks by comparing their correlation with human annotations. Contrary to expectations, our findings revealed that none of the factuality metrics showed any significant correlations (e.g., coefficient scores greater than 0.3) to human evaluations of factuality for GPT-4, PaLM-2, and Claude-2, with the only exception being GPT-3.5 in two subcategories of factuality. Nonetheless, our findings are consistent across almost all factual error types, suggesting a fundamental limitation in the ability of current LLMs to assess factuality.
For agents at a contact centre receiving calls, the most important piece of information is the reason for a given call. An agent cannot provide support on a call if they do not know why a customer is calling. In this paper we describe our implementation of a commercial system to detect Purpose of Call statements in English business call transcripts in real time. We present a detailed analysis of types of Purpose of Call statements and language patterns related to them, discuss an approach to collect rich training data by bootstrapping from a set of rules to a neural model, and describe a hybrid model which consists of a transformer-based classifier and a set of rules by leveraging insights from the analysis of call transcripts. The model achieved 88.6 F1 on average in various types of business calls when tested on real life data and has low inference time. We reflect on the challenges and design decisions when developing and deploying the system.
An Entity Linking system aligns the textual mentions of entities in a text to their corresponding entries in a knowledge base. However, deploying a neural entity linking system for efficient real-time inference in production environments is a challenging task. In this work, we present a neural entity linking system that connects the product and organization type entities in business conversations to their corresponding Wikipedia and Wikidata entries. The proposed system leverages Elasticsearch to ensure inference efficiency when deployed in a resource limited cloud machine, and obtains significant improvements in terms of inference speed and memory consumption while retaining high accuracy.
In recent years, researchers tend to pre-train ever-larger language models to explore the upper limit of deep models. However, large language model pre-training costs intensive computational resources, and most of the models are trained from scratch without reusing the existing pre-trained models, which is wasteful. In this paper, we propose bert2BERT, which can effectively transfer the knowledge of an existing smaller pre-trained model to a large model through parameter initialization and significantly improve the pre-training efficiency of the large model. Specifically, we extend the previous function-preserving method proposed in computer vision on the Transformer-based language model, and further improve it by proposing a novel method, advanced knowledge for large model’s initialization. In addition, a two-stage learning method is proposed to further accelerate the pre-training. We conduct extensive experiments on representative PLMs (e.g., BERT and GPT) and demonstrate that (1) our method can save a significant amount of training cost compared with baselines including learning from scratch, StackBERT and MSLT; (2) our method is generic and applicable to different types of pre-trained models. In particular, bert2BERT saves about 45% and 47% computational cost of pre-training BERT BASE and GPT BASE by reusing the models of almost their half sizes.
Entity-level sentiment analysis predicts the sentiment about entities mentioned in a given text. It is very useful in a business context to understand user emotions towards certain entities, such as products or companies. In this paper, we demonstrate how we developed an entity-level sentiment analysis system that analyzes English telephone conversation transcripts in contact centers to provide business insight. We present two approaches, one entirely based on the transformer-based DistilBERT model, and another that uses a neural network supplemented with some heuristic rules.
Telephone transcription data can be very noisy due to speech recognition errors, disfluencies, etc. Not only that annotating such data is very challenging for the annotators, but also such data may have lots of annotation errors even after the annotation job is completed, resulting in a very poor model performance. In this paper, we present an active learning framework that leverages human in the loop learning to identify data samples from the annotated dataset for re-annotation that are more likely to contain annotation errors. In this way, we largely reduce the need for data re-annotation for the whole dataset. We conduct extensive experiments with our proposed approach for Named Entity Recognition and observe that by re-annotating only about 6% training instances out of the whole dataset, the F1 score for a certain entity type can be significantly improved by about 25%.
Prompting methods recently achieve impressive success in few-shot learning. These methods modify input samples with prompt sentence pieces, and decode label tokens to map samples to corresponding labels. However, such a paradigm is very inefficient for the task of slot tagging. Since slot tagging samples are multiple consecutive words in a sentence, the prompting methods have to enumerate all n-grams token spans to find all the possible slots, which greatly slows down the prediction. To tackle this, we introduce an inverse paradigm for prompting. Different from the classic prompts mapping tokens to labels, we reversely predict slot values given slot types. Such inverse prompting only requires a one-turn prediction for each slot type and greatly speeds up the prediction. Besides, we propose a novel Iterative Prediction Strategy, from which the model learns to refine predictions by considering the relations between different slot types. We find, somewhat surprisingly, the proposed method not only predicts faster but also significantly improves the effect (improve over 6.1 F1-scores on 10-shot setting) and achieves new state-of-the-art performance.
We present a simple yet effective method to train a named entity recognition (NER) model that operates on business telephone conversation transcripts that contain noise due to the nature of spoken conversation and artifacts of automatic speech recognition. We first fine-tune LUKE, a state-of-the-art Named Entity Recognition (NER) model, on a limited amount of transcripts, then use it as the teacher model to teach a smaller DistilBERT-based student model using a large amount of weakly labeled data and a small amount of human-annotated data. The model achieves high accuracy while also satisfying the practical constraints for inclusion in a commercial telephony product: realtime performance when deployed on cost-effective CPUs rather than GPUs. In this paper, we introduce the fine-tune-then-distill method for entity recognition on real world noisy data to deploy our NER model in a limited budget production environment. By generating pseudo-labels using a large teacher model pre-trained on typed text while fine-tuned on noisy speech text to train a smaller student model, we make the student model 75x times faster while reserving 99.09% of its accuracy. These findings demonstrate that our proposed approach is very effective in limited budget scenarios to alleviate the need of human labeling of a large amount of noisy data.
Pre-trained language models (PLMs) have achieved great success in natural language processing. Most of PLMs follow the default setting of architecture hyper-parameters (e.g., the hidden dimension is a quarter of the intermediate dimension in feed-forward sub-networks) in BERT. Few studies have been conducted to explore the design of architecture hyper-parameters in BERT, especially for the more efficient PLMs with tiny sizes, which are essential for practical deployment on resource-constrained devices. In this paper, we adopt the one-shot Neural Architecture Search (NAS) to automatically search architecture hyper-parameters. Specifically, we carefully design the techniques of one-shot learning and the search space to provide an adaptive and efficient development way of tiny PLMs for various latency constraints. We name our method AutoTinyBERT and evaluate its effectiveness on the GLUE and SQuAD benchmarks. The extensive experiments show that our method outperforms both the SOTA search-based baseline (NAS-BERT) and the SOTA distillation-based methods (such as DistilBERT, TinyBERT, MiniLM, and MobileBERT). In addition, based on the obtained architectures, we propose a more efficient development method that is even faster than the development of a single PLM. The source code and models will be publicly available upon publication.
Automatic Speech Recognition (ASR) systems generally do not produce punctuated transcripts. To make transcripts more readable and follow the expected input format for downstream language models, it is necessary to add punctuation marks. In this paper, we tackle the punctuation restoration problem specifically for the noisy text (e.g., phone conversation scenarios). To leverage the available written text datasets, we introduce a data sampling technique based on an n-gram language model to sample more training data that are similar to our in-domain data. Moreover, we propose a two-stage fine-tuning approach that utilizes the sampled external data as well as our in-domain dataset for models based on BERT. Extensive experiments show that the proposed approach outperforms the baseline with an improvement of 1.12% F1 score.