The rapid growth of scientific publications, particularly during the COVID-19 pandemic, emphasizes the need for tools to help researchers efficiently comprehend the latest advancements. One essential part of understanding scientific literature is research aspect classification, which categorizes sentences in abstracts to Background, Purpose, Method, and Finding. In this study, we investigate the impact of different datasets on model performance for the crowd-annotated CODA-19 research aspect classification task. Specifically, we explore the potential benefits of using the large, automatically curated PubMed 200K RCT dataset and evaluate the effectiveness of large language models (LLMs), such as LLaMA, GPT-3, ChatGPT, and GPT-4. Our results indicate that using the PubMed 200K RCT dataset does not improve performance for the CODA-19 task. We also observe that while GPT-4 performs well, it does not outperform the SciBERT model fine-tuned on the CODA-19 dataset, emphasizing the importance of a dedicated and task-aligned datasets dataset for the target task.
There is growing interest in systems that generate captions for scientific figures. However, assessing these systems’ output poses a significant challenge. Human evaluation requires academic expertise and is costly, while automatic evaluation depends on often low-quality author-written captions. This paper investigates using large language models (LLMs) as a cost-effective, reference-free method for evaluating figure captions. We first constructed SCICAP-EVAL, a human evaluation dataset that contains human judgments for 3,600 scientific figure captions, both original and machine-made, for 600 arXiv figures. We then prompted LLMs like GPT-4 and GPT-3 to score (1-6) each caption based on its potential to aid reader understanding, given relevant context such as figure-mentioning paragraphs. Results show that GPT-4, used as a zero-shot evaluator, outperformed all other models and even surpassed assessments made by computer science undergraduates, achieving a Kendall correlation score of 0.401 with Ph.D. students’ rankings.
Good figure captions help paper readers understand complex scientific figures. Unfortunately, even published papers often have poorly written captions. Automatic caption generation could aid paper writers by providing good starting captions that can be refined for better quality. Prior work often treated figure caption generation as a vision-to-language task. In this paper, we show that it can be more effectively tackled as a text summarization task in scientific documents. We fine-tuned PEGASUS, a pre-trained abstractive summarization model, to specifically summarize figure-referencing paragraphs (e.g., “Figure 3 shows...”) into figure captions. Experiments on large-scale arXiv figures show that our method outperforms prior vision methods in both automatic and human evaluations. We further conducted an in-depth investigation focused on two key challenges: (i) the common presence of low-quality author-written captions and (ii) the lack of clear standards for good captions. Our code and data are available at: https://github.com/Crowd-AI-Lab/Generating-Figure-Captions-as-a-Text-Summarization-Task.
Collecting data for conversational semantic parsing is a time-consuming and demanding process. In this paper we consider, given an incomplete dataset with only a small amount of data, how to build an AI-powered human-in-the-loop process to enable efficient data collection. A guided K-best selection process is proposed, which (i) generates a set of possible valid candidates; (ii) allows users to quickly traverse the set and filter incorrect parses; and (iii) asks users to select the correct parse, with minimal modification when necessary. We investigate how to best support users in efficiently traversing the candidate set and locating the correct parse, in terms of speed and accuracy. In our user study, consisting of five annotators labeling 300 instances each, we find that combining keyword searching, where keywords can be used to query relevant candidates, and keyword suggestion, where representative keywords are automatically generated, enables fast and accurate annotation.
Many people read online reviews to learn about real-world entities of their interest. However, majority of reviews only describes general experiences and opinions of the customers, and may not reveal facts that are specific to the entity being reviewed. In this work, we focus on a novel task of mining from a review corpus sentences that are unique for each entity. We refer to this task as Salient Fact Extraction. Salient facts are extremely scarce due to their very nature. Consequently, collecting labeled examples for training supervised models is tedious and cost-prohibitive. To alleviate this scarcity problem, we develop an unsupervised method, ZL-Distiller, which leverages contextual language representations of the reviews and their distributional patterns to identify salient sentences about entities. Our experiments on multiple domains (hotels, products, and restaurants) show that ZL-Distiller achieves state-of-the-art performance and further boosts the performance of other supervised/unsupervised algorithms for the task. Furthermore, we show that salient sentences mined by ZL-Distiller provide unique and detailed information about entities, which benefit downstream NLP applications including question answering and summarization.
This paper introduces Semantic Frame Forecast, a task that predicts the semantic frames that will occur in the next 10, 100, or even 1,000 sentences in a running story. Prior work focused on predicting the immediate future of a story, such as one to a few sentences ahead. However, when novelists write long stories, generating a few sentences is not enough to help them gain high-level insight to develop the follow-up story. In this paper, we formulate a long story as a sequence of “story blocks,” where each block contains a fixed number of sentences (e.g., 10, 100, or 200). This formulation allows us to predict the follow-up story arc beyond the scope of a few sentences. We represent a story block using the term frequencies (TF) of semantic frames in it, normalized by each frame’s inverse document frequency (IDF). We conduct semantic frame forecast experiments on 4,794 books from the Bookcorpus and 7,962 scientific abstracts from CODA-19, with block sizes ranging from 5 to 1,000 sentences. The results show that automated models can forecast the follow-up story blocks better than the random, prior, and replay baselines, indicating the feasibility of the task. We also learn that the models using the frame representation as features outperform all the existing approaches when the block size is over 150 sentences. The human evaluation also shows that the proposed frame representation, when visualized as word clouds, is comprehensible, representative, and specific to humans.
The competition of extracting COVID-19 events from Twitter is to develop systems that can automatically extract related events from tweets. The built system should identify different pre-defined slots for each event, in order to answer important questions (e.g., Who is tested positive? What is the age of the person? Where is he/she?). To tackle these challenges, we propose the Joint Event Multi-task Learning (JOELIN) model. Through a unified global learning framework, we make use of all the training data across different events to learn and fine-tune the language model. Moreover, we implement a type-aware post-processing procedure using named entity recognition (NER) to further filter the predictions. JOELIN outperforms the BERT baseline by 17.2% in micro F1.
This paper introduces CODA-19, a human-annotated dataset that codes the Background, Purpose, Method, Finding/Contribution, and Other sections of 10,966 English abstracts in the COVID-19 Open Research Dataset. CODA-19 was created by 248 crowd workers from Amazon Mechanical Turk within 10 days, and achieved labeling quality comparable to that of experts. Each abstract was annotated by nine different workers, and the final labels were acquired by majority vote. The inter-annotator agreement (Cohen’s kappa) between the crowd and the biomedical expert (0.741) is comparable to inter-expert agreement (0.788). CODA-19’s labels have an accuracy of 82.2% when compared to the biomedical expert’s labels, while the accuracy between experts was 85.0%. Reliable human annotations help scientists access and integrate the rapidly accelerating coronavirus literature, and also serve as the battery of AI/NLP research, but obtaining expert annotations can be slow. We demonstrated that a non-expert crowd can be rapidly employed at scale to join the fight against COVID-19.
Many English-as-a-second language learners have trouble using near-synonym words (e.g., small vs.little; briefly vs.shortly) correctly, and often look for example sentences to learn how two nearly synonymous terms differ. Prior work uses hand-crafted scores to recommend sentences but has difficulty in adopting such scores to all the near-synonyms as near-synonyms differ in various ways. We notice that the helpfulness of the learning material would reflect on the learners’ performance. Thus, we propose the inference-based learner-like agent to mimic learner behavior and identify good learning materials by examining the agent’s performance. To enable the agent to behave like a learner, we leverage entailment modeling’s capability of inferring answers from the provided materials. Experimental results show that the proposed agent is equipped with good learner-like behavior to achieve the best performance in both fill-in-the-blank (FITB) and good example sentence selection tasks. We further conduct a classroom user study with college ESL learners. The results of the user study show that the proposed agent can find out example sentences that help students learn more easily and efficiently. Compared to other models, the proposed agent improves the score of more than 17% of students after learning.
We introduce the first dataset for human edits of machine-generated visual stories and explore how these collected edits may be used for the visual story post-editing task. The dataset ,VIST-Edit, includes 14,905 human-edited versions of 2,981 machine-generated visual stories. The stories were generated by two state-of-the-art visual storytelling models, each aligned to 5 human-edited versions. We establish baselines for the task, showing how a relatively small set of human edits can be leveraged to boost the performance of large visual storytelling models. We also discuss the weak correlation between automatic evaluation scores and human ratings, motivating the need for new automatic metrics.
Knowing how to use words appropriately has been a key to improving language proficiency. Previous studies typically discuss how students learn receptively to select the correct candidate from a set of confusing words in the fill-in-the-blank task where specific context is given. In this paper, we go one step further, assisting students to learn to use confusing words appropriately in a productive task: sentence translation. We leverage the GiveMe-Example system, which suggests example sentences for each confusing word, to achieve this goal. In this study, students learn to differentiate the confusing words by reading the example sentences, and then choose the appropriate word(s) to complete the sentence translation task. Results show students made substantial progress in terms of sentence structure. In addition, highly proficient students better managed to learn confusing words. In view of the influence of the first language on learners, we further propose an effective approach to improve the quality of the suggested sentences.
We present MoodSwipe, a soft keyboard that suggests text messages given the user-specified emotions utilizing the real dialog data. The aim of MoodSwipe is to create a convenient user interface to enjoy the technology of emotion classification and text suggestion, and at the same time to collect labeled data automatically for developing more advanced technologies. While users select the MoodSwipe keyboard, they can type as usual but sense the emotion conveyed by their text and receive suggestions for their message as a benefit. In MoodSwipe, the detected emotions serve as the medium for suggested texts, where viewing the latter is the incentive to correcting the former. We conduct several experiments to show the superiority of the emotion classification models trained on the dialog data, and further to verify good emotion cues are important context for text suggestion.
In this paper, we propose GiveMeExample that ranks example sentences according to their capacity of demonstrating the differences among English and Chinese near-synonyms for language learners. The difficulty of the example sentences is automatically detected. Furthermore, the usage models of the near-synonyms are built by the GMM and Bi-LSTM models to suggest the best elaborative sentences. Experiments show the good performance both in the fill-in-the-blank test and on the manually labeled gold data, that is, the built models can select the appropriate words for the given context and vice versa.