Multilingual vision-language (V&L) pre-training has achieved remarkable progress in learning universal representations across different modalities and languages. In spite of recent success, there still remain challenges limiting further improvements of V&L pre-trained models in multilingual settings. Particularly, current V&L pre-training methods rely heavily on strictly-aligned multilingual image-text pairs generated from English-centric datasets through machine translation. However, the cost of collecting and translating such strictly-aligned datasets is usually unbearable. In this paper, we propose Regularized Contrastive Cross-lingual Cross-modal (RC3) pre-training, which further exploits more abundant weakly-aligned multilingual image-text pairs. Specifically, we design a regularized cross-lingual visio-textual contrastive learning objective that constrains the representation proximity of weakly-aligned visio-textual inputs according to textual relevance. Besides, existing V&L pre-training approaches mainly deal with visual inputs by either region-of-interest (ROI) features or patch embeddings. We flexibly integrate the two forms of visual features into our model for pre-training and downstream multi-modal tasks. Extensive experiments on 5 downstream multi-modal tasks across 6 languages demonstrate the effectiveness of our proposed method over competitive contrast models with strong zero-shot capability.
Few-shot relation extraction (FSRE) aims to train a model that can deal with new relations using only a few labeled examples. Most existing studies employ Prototypical Networks for FSRE, which usually overfits the relation classes in the training set and cannot generalize well to unseen relations. By investigating the class separation of an FSRE model, we find that model upper layers are prone to learn relation-specific knowledge. Therefore, in this paper, we propose a HyperNetwork-based Decoupling approach to improve the generalization of FSRE models. Specifically, our model consists of an encoder, a network generator (for producing relation classifiers) and the produced-then-finetuned classifiers for every N-way-K-shot episode. Meanwhile, we design a two-step training framework along with a class-agnostic aligner, in which the generated classifiers focus on acquiring relation-specific knowledge and the encoder is encouraged to learn more general relation knowledge. In this way, the roles of upper and lower layers in an FSRE model are explicitly decoupled, thus enhancing its generalizing capability during testing. Experiments on two public datasets demonstrate the effectiveness of our method.
The goal of the cross-lingual summarization (CLS) is to convert a document in one language (e.g., English) to a summary in another one (e.g., Chinese). The CLS task is essentially the combination of machine translation (MT) and monolingual summarization (MS), and thus there exists the hierarchical relationship between MT&MS and CLS. Existing studies on CLS mainly focus on utilizing pipeline methods or jointly training an end-to-end model through an auxiliary MT or MS objective. However, it is very challenging for the model to directly conduct CLS as it requires both the abilities to translate and summarize. To address this issue, we propose a hierarchical model for the CLS task, based on the conditional variational auto-encoder. The hierarchical model contains two kinds of latent variables at the local and global levels, respectively. At the local level, there are two latent variables, one for translation and the other for summarization. As for the global level, there is another latent variable for cross-lingual summarization conditioned on the two local-level variables. Experiments on two language directions (English-Chinese) verify the effectiveness and superiority of the proposed approach. In addition, we show that our model is able to generate better cross-lingual summaries than comparison models in the few-shot setting.
Most dominant neural machine translation (NMT) models are restricted to make predictions only according to the local context of preceding words in a left-to-right manner. Although many previous studies try to incorporate global information into NMT models, there still exist limitations on how to effectively exploit bidirectional global context. In this paper, we propose a Confidence Based Bidirectional Global Context Aware (CBBGCA) training framework for NMT, where the NMT model is jointly trained with an auxiliary conditional masked language model (CMLM). The training consists of two stages: (1) multi-task joint training; (2) confidence based knowledge distillation. At the first stage, by sharing encoder parameters, the NMT model is additionally supervised by the signal from the CMLM decoder that contains bidirectional global contexts. Moreover, at the second stage, using the CMLM as teacher, we further pertinently incorporate bidirectional global context to the NMT model on its unconfidently-predicted target words via knowledge distillation. Experimental results show that our proposed CBBGCA training framework significantly improves the NMT model by +1.02, +1.30 and +0.57 BLEU scores on three large-scale translation datasets, namely WMT’14 English-to-German, WMT’19 Chinese-to-English and WMT’14 English-to-French, respectively.
k-Nearest-Neighbor Machine Translation (kNN-MT) becomes an important research direction of NMT in recent years. Its main idea is to retrieve useful key-value pairs from an additional datastore to modify translations without updating the NMT model. However, the underlying retrieved noisy pairs will dramatically deteriorate the model performance. In this paper, we conduct a preliminary study and find that this problem results from not fully exploiting the prediction of the NMT model. To alleviate the impact of noise, we propose a confidence-enhanced kNN-MT model with robust training. Concretely, we introduce the NMT confidence to refine the modeling of two important components of kNN-MT: kNN distribution and the interpolation weight. Meanwhile we inject two types of perturbations into the retrieved pairs for robust training. Experimental results on four benchmark datasets demonstrate that our model not only achieves significant improvements over current kNN-MT models, but also exhibits better robustness. Our code is available at https://github.com/DeepLearnXMU/Robust-knn-mt.
Simile recognition involves two subtasks: simile sentence classification that discriminates whether a sentence contains simile, and simile component extraction that locates the corresponding objects (i.e., tenors and vehicles).Recent work ignores features other than surface strings and suffers from the data hunger issue.We explore expressive features for this task to help achieve more effective data utilization.In particular, we study two types of features: 1) input-side features that include POS tags, dependency trees and word definitions, and 2) decoding features that capture the interdependence among various decoding decisions.We further construct a model named HGSR, which merges the input-side features as a heterogeneous graph and leverages decoding features via distillation.Experiments show that HGSR significantly outperforms the current state-of-the-art systems and carefully designed baselines, verifying the effectiveness of introduced features. We will release our code upon paper acceptance.
Most existing methods on robust neural machine translation (NMT) construct adversarial examples by injecting noise into authentic examples and indiscriminately exploit two types of examples. They require the model to translate both the authentic source sentence and its adversarial counterpart into the identical target sentence within the same training stage, which may be a suboptimal choice to achieve robust NMT. In this paper, we first conduct a preliminary study to confirm this claim and further propose an Iterative Scheduled Data-switch Training Framework to mitigate this problem. Specifically, we introduce two training stages, iteratively switching between authentic and adversarial examples. Compared with previous studies, our model focuses more on just one type of examples at each single stage, which can better exploit authentic and adversarial examples, and thus obtaining a better robust NMT model. Moreover, we introduce an improved curriculum learning method with a sampling strategy to better schedule the process of noise injection. Experimental results show that our model significantly surpasses several competitive baselines on four translation benchmarks. Our source code is available at https://github.com/DeepLearnXMU/RobustNMT-ISDST.
Due to the great potential in facilitating software development, code generation has attracted increasing attention recently. Generally, dominant models are Seq2Tree models, which convert the input natural language description into a sequence of tree-construction actions corresponding to the pre-order traversal of an Abstract Syntax Tree (AST). However, such a traversal order may not be suitable for handling all multi-branch nodes. In this paper, we propose to equip the Seq2Tree model with a context-based Branch Selector, which is able to dynamically determine optimal expansion orders of branches for multi-branch nodes. Particularly, since the selection of expansion orders is a non-differentiable multi-step operation, we optimize the selector through reinforcement learning, and formulate the reward function as the difference of model losses obtained through different expansion orders. Experimental results and in-depth analysis on several commonly-used datasets demonstrate the effectiveness and generality of our approach. We have released our code at https://github.com/DeepLearnXMU/CG-RL.
Neural Chat Translation (NCT) aims to translate conversational text between speakers of different languages. Despite the promising performance of sentence-level and context-aware neural machine translation models, there still remain limitations in current NCT models because the inherent dialogue characteristics of chat, such as dialogue coherence and speaker personality, are neglected. In this paper, we propose to promote the chat translation by introducing the modeling of dialogue characteristics into the NCT model. To this end, we design four auxiliary tasks including monolingual response generation, cross-lingual response generation, next utterance discrimination, and speaker identification. Together with the main chat translation task, we optimize the enhanced NCT model through the training objectives of all these tasks. By this means, the NCT model can be enhanced by capturing the inherent dialogue characteristics, thus generating more coherent and speaker-relevant translations. Comprehensive experiments on four language directions (English<->German and English<->Chinese) verify the effectiveness and superiority of the proposed approach.
Recently, document-level neural machine translation (NMT) has become a hot topic in the community of machine translation. Despite its success, most of existing studies ignored the discourse structure information of the input document to be translated, which has shown effective in other tasks. In this paper, we propose to improve document-level NMT with the aid of discourse structure information. Our encoder is based on a hierarchical attention network (HAN) (Miculicich et al., 2018). Specifically, we first parse the input document to obtain its discourse structure. Then, we introduce a Transformer-based path encoder to embed the discourse structure information of each word. Finally, we combine the discourse structure information with the word embedding before it is fed into the encoder. Experimental results on the English-to-German dataset show that our model can significantly outperform both Transformer and Transformer+HAN.
Multi-modal neural machine translation (NMT) aims to translate source sentences into a target language paired with images. However, dominant multi-modal NMT models do not fully exploit fine-grained semantic correspondences between semantic units of different modalities, which have potential to refine multi-modal representation learning. To deal with this issue, in this paper, we propose a novel graph-based multi-modal fusion encoder for NMT. Specifically, we first represent the input sentence and image using a unified multi-modal graph, which captures various semantic relationships between multi-modal semantic units (words and visual objects). We then stack multiple graph-based multi-modal fusion layers that iteratively perform semantic interactions to learn node representations. Finally, these representations provide an attention-based context vector for the decoder. We evaluate our proposed encoder on the Multi30K datasets. Experimental results and in-depth analysis show the superiority of our multi-modal NMT model.
Unsupervised style transfer aims to change the style of an input sentence while preserving its original content without using parallel training data. In current dominant approaches, owing to the lack of fine-grained control on the influence from the target style, they are unable to yield desirable output sentences. In this paper, we propose a novel attentional sequence-to-sequence (Seq2seq) model that dynamically exploits the relevance of each output word to the target style for unsupervised style transfer. Specifically, we first pretrain a style classifier, where the relevance of each input word to the original style can be quantified via layer-wise relevance propagation. In a denoising auto-encoding manner, we train an attentional Seq2seq model to reconstruct input sentences and repredict word-level previously-quantified style relevance simultaneously. In this way, this model is endowed with the ability to automatically predict the style relevance of each output word. Then, we equip the decoder of this model with a neural style component to exploit the predicted wordlevel style relevance for better style transfer. Particularly, we fine-tune this model using a carefully-designed objective function involving style transfer, style relevance consistency, content preservation and fluency modeling loss terms. Experimental results show that our proposed model achieves state-of-the-art performance in terms of both transfer accuracy and content preservation.