The capability to reason from text is crucial for real-world NLP applications. Real-world scenarios often involve incomplete or evolving data. In response, individuals update their beliefs and understandings accordingly. However, most existing evaluations assume that language models (LMs) operate with consistent information. We introduce Belief-R, a new dataset designed to test LMs’ belief revision ability when presented with new evidence. Inspired by how humans suppress prior inferences, this task assesses LMs within the newly proposed delta reasoning (𝛥 R) framework. Belief-R features sequences of premises designed to simulate scenarios where additional information could necessitate prior conclusions drawn by LMs. We evaluate ~30 LMs across diverse prompting strategies and found that LMs generally struggle to appropriately revise their beliefs in response to new information. Further, models adept at updating often underperformed in scenarios without necessary updates, highlighting a critical trade-off. These insights underscore the importance of improving LMs’ adaptiveness to changing information, a step toward more reliable AI systems.
The hallucination problem of Large Language Models (LLMs) significantly limits their reliability and trustworthiness. Humans have a self-awareness process that allows us to recognize what we don’t know when faced with queries. Inspired by this, our paper investigates whether LLMs can estimate their own hallucination risk before response generation. We analyze the internal mechanisms of LLMs broadly both in terms of training data sources and across 15 diverse Natural Language Generation (NLG) tasks, spanning over 700 datasets. Our empirical analysis reveals two key insights: (1) LLM internal states indicate whether they have seen the query in training data or not; and (2) LLM internal states show they are likely to hallucinate or not regarding the query. Our study explores particular neurons, activation layers, and tokens that play a crucial role in the LLM perception of uncertainty and hallucination risk. By a probing estimator, we leverage LLM self-assessment, achieving an average hallucination estimation accuracy of 84.32% at run time.
Large language models (LLMs) have shown promise for generative and knowledge-intensive tasks including question-answering (QA) tasks. However, the practical deployment still faces challenges, notably the issue of “hallucination”, where models generate plausible-sounding but unfaithful or nonsensical information. This issue becomes particularly critical in the medical domain due to the uncommon professional concepts and potential social risks involved. This paper analyses the phenomenon of hallucination in medical generative QA systems using widely adopted LLMs and datasets. Our investigation centers on the identification and comprehension of common problematic answers, with a specific emphasis on hallucination. To tackle this challenge, we present an interactive self-reflection methodology that incorporates knowledge acquisition and answer generation. Through this feedback process, our approach steadily enhances the factuality, consistency, and entailment of the generated answers. Consequently, we harness the interactivity and multitasking ability of LLMs and produce progressively more precise and accurate answers. Experimental results on both automatic and human evaluation demonstrate the superiority of our approach in hallucination reduction compared to baselines.
Inference, especially those derived from inductive processes, is a crucial component in our conversation to complement the information implicitly or explicitly conveyed by a speaker. While recent large language models show remarkable advances in inference tasks, their performance in inductive reasoning, where not all information is present in the context, is far behind deductive reasoning. In this paper, we analyze the behavior of the models based on the task difficulty defined by the semantic information gap – which distinguishes inductive and deductive reasoning. Our analysis reveals that the information gap between dialogue contexts and desired inferences renders the inductive inference process more challenging. To mitigate this information gap, we investigate a contrastive learning approach by feeding negative samples. Our experiments suggest negative samples help models understand what is wrong and improve their inference generations.
To diversify and enrich generated dialogue responses, knowledge-grounded dialogue has been investigated in recent years. The existing methods tackle the knowledge grounding challenge by retrieving the relevant sentences over a large corpus and augmenting the dialogues with explicit extra information. Despite their success, however, the existing works have drawbacks on the inference efficiency. This paper proposes KnowExpert, an end-to-end framework to bypass the explicit retrieval process and inject knowledge into the pre-trained language models with lightweight adapters and adapt to the knowledge-grounded dialogue task. To the best of our knowledge, this is the first attempt to tackle this challenge without retrieval in this task under an open-domain chit-chat scenario. The experimental results show that KnowExpert performs comparably with some retrieval-based baselines while being time-efficient in inference, demonstrating the effectiveness of our proposed method.
Resolving dependencies among dialogue history is one of the main obstacles in the research on conversational question answering (QA). The conversational question rewrites (QR) task has been shown to be effective to solve this problem by reformulating questions in a self-contained form. However, QR datasets are limited and existing methods tend to depend on the assumption of the existence of corresponding QR datasets for every CQA dataset. This paper proposes a reinforcement learning approach that integrates QR and CQA tasks without corresponding labeled QR datasets. We train a QR model based on the reward signal obtained from the CQA, and the experimental results show that our approach can bring improvement over the pipeline approaches.
In order to offer a customized script tool and inspire professional scriptwriters, we present VScript. It is a controllable pipeline that generates complete scripts, including dialogues and scene descriptions, as well as presents visually using video retrieval. With an interactive interface, our system allows users to select genres and input starting words that control the theme and development of the generated script. We adopt a hierarchical structure, which first generates the plot, then the script and its visual presentation. A novel approach is also introduced to plot-guided dialogue generation by treating it as an inverse dialogue summarization. The experiment results show that our approach outperforms the baselines on both automatic and human evaluations, especially in genre control.
Question rewriting (QR) is a subtask of conversational question answering (CQA) aiming to ease the challenges of understanding dependencies among dialogue history by reformulating questions in a self-contained form. Despite seeming plausible, little evidence is available to justify QR as a mitigation method for CQA. To verify the effectiveness of QR in CQA, we investigate a reinforcement learning approach that integrates QR and CQA tasks and does not require corresponding QR datasets for targeted CQA.We find, however, that the RL method is on par with the end-to-end baseline. We provide an analysis of the failure and describe the difficulty of exploiting QR for CQA.
Information-seeking dialogue systems, including knowledge identification and response generation, aim to respond to users with fluent, coherent, and informative responses based on users’ needs, which. To tackle this challenge, we utilize data augmentation methods and several training techniques with the pre-trained language models to learn a general pattern of the task and thus achieve promising performance. In DialDoc21 competition, our system achieved 74.95 F1 score and 60.74 Exact Match score in subtask 1, and 37.72 SacreBLEU score in subtask 2. Empirical analysis is provided to explain the effectiveness of our approaches.
Over the past year, research in various domains, including Natural Language Processing (NLP), has been accelerated to fight against the COVID-19 pandemic, yet such research has just started on dialogue systems. In this paper, we introduce an end-to-end dialogue system which aims to ease the isolation of people under self-quarantine. We conduct a control simulation experiment to assess the effects of the user interface: a web-based virtual agent, Nora vs. the android ERICA via a video call. The experimental results show that the android can offer a more valuable user experience by giving the impression of being more empathetic and engaging in the conversation due to its nonverbal information, such as facial expressions and body gestures.
Politically sensitive topics are still a challenge for open-domain chatbots. However, dealing with politically sensitive content in a responsible, non-partisan, and safe behavior way is integral for these chatbots. Currently, the main approach to handling political sensitivity is by simply changing such a topic when it is detected. This is safe but evasive and results in a chatbot that is less engaging. In this work, as a first step towards a politically safe chatbot, we propose a group of metrics for assessing their political prudence. We then conduct political prudence analysis of various chatbots and discuss their behavior from multiple angles through our automatic metric and human evaluation metrics. The testsets and codebase are released to promote research in this area.
Personalized dialogue systems are an essential step toward better human-machine interaction. Existing personalized dialogue agents rely on properly designed conversational datasets, which are mostly monolingual (e.g., English), which greatly limits the usage of conversational agents in other languages. In this paper, we propose a multi-lingual extension of Persona-Chat, namely XPersona. Our dataset includes persona conversations in six different languages other than English for evaluating multilingual personalized agents. We experiment with both multilingual and cross-lingual trained baselines and evaluate them against monolingual and translation-pipeline models using both automatic and human evaluation. Experimental results show that the multilingual trained models outperform the translation pipeline and that they are on par with the monolingual models, with the advantage of having a single model across multiple languages. On the other hand, the state-of-the-art cross-lingual trained models achieve inferior performance to the other models, showing that cross-lingual conversation modeling is a challenging task. We hope that our dataset and baselines will accelerate research in multilingual dialogue systems.
Conventional multimodal tasks, such as caption generation and visual question answering, have allowed machines to understand an image by describing or being asked about it in natural language, often via a sentence. Datasets for these tasks contain a large number of pairs of an image and the corresponding sentence as an instance. However, a real multimodal document such as a news article or Wikipedia page consists of multiple sentences with multiple images. Such documents require an advanced skill of jointly considering the multiple texts and multiple images, beyond a single sentence and image, for the interpretation. Therefore, aiming at building a system that can understand multimodal documents, we propose a task called image position prediction (IPP). In this task, a system learns plausible positions of images in a given document. To study this task, we automatically constructed a dataset of 66K multimodal documents with 320K images from Wikipedia articles. We conducted a preliminary experiment to evaluate the performance of a current multimodal system on our task. The experimental results show that the system outperformed simple baselines while the performance is still far from human performance, which thus poses new challenges in multimodal research.
There has been considerable progress made towards conversational models that generate coherent and fluent responses; however, this often involves training large language models on large dialogue datasets, such as Reddit. These large conversational models provide little control over the generated responses, and this control is further limited in the absence of annotated conversational datasets for attribute specific generation that can be used for fine-tuning the model. In this paper, we first propose and evaluate plug-and-play methods for controllable response generation, which does not require dialogue specific datasets and does not rely on fine-tuning a large model. While effective, the decoding procedure induces considerable computational overhead, rendering the conversational model unsuitable for interactive usage. To overcome this, we introduce an approach that does not require further computation at decoding time, while also does not require any fine-tuning of a large language model. We demonstrate, through extensive automatic and human evaluation, a high degree of control over the generated conversational responses with regard to multiple desired attributes, while being fluent.