Feng-Lin Li


2024

pdf bib
Don’t Forget Your Reward Values: Language Model Alignment via Value-based Calibration
Xin Mao | Feng-Lin Li | Huimin Xu | Wei Zhang | Wang Chen | Anh Tuan Luu
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

While Reinforcement Learning from Human Feedback (RLHF) significantly enhances the generation quality of Large Language Models (LLMs), recent studies have raised concerns regarding the complexity and instability associated with the Proximal Policy Optimization (PPO) algorithm, proposing a series of order-based alignment methods as viable alternatives. This paper delves into existing order-based methods, unifying them into one framework and examining their inefficiencies in utilizing reward values. Building upon these findings, we propose a new Value-based Calibration (VCB) method to better align LLMs with human preferences. Experimental results demonstrate that VCB surpasses existing alignment methods on AI assistant and summarization datasets, providing impressive generalizability, robustness, and diversity in different settings.

2021

pdf bib
KACE: Generating Knowledge Aware Contrastive Explanations for Natural Language Inference
Qianglong Chen | Feng Ji | Xiangji Zeng | Feng-Lin Li | Ji Zhang | Haiqing Chen | Yin Zhang
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

In order to better understand the reason behind model behaviors (i.e., making predictions), most recent works have exploited generative models to provide complementary explanations. However, existing approaches in NLP mainly focus on “WHY A” rather than contrastive “WHY A NOT B”, which is shown to be able to better distinguish confusing candidates and improve data efficiency in other research fields. In this paper, we focus on generating contrastive explanations with counterfactual examples in NLI and propose a novel Knowledge-Aware Contrastive Explanation generation framework (KACE).Specifically, we first identify rationales (i.e., key phrases) from input sentences, and use them as key perturbations for generating counterfactual examples. After obtaining qualified counterfactual examples, we take them along with original examples and external knowledge as input, and employ a knowledge-aware generative pre-trained language model to generate contrastive explanations. Experimental results show that contrastive explanations are beneficial to fit the scenarios by clarifying the difference between the predicted answer and other possible wrong ones. Moreover, we train an NLI model enhanced with contrastive explanations and achieves an accuracy of 91.9% on SNLI, gaining improvements of 5.7% against ETPA (“Explain-Then-Predict-Attention”) and 0.6% against NILE (“WHY A”).

pdf bib
Turn-Level User Satisfaction Estimation in E-commerce Customer Service
Runze Liang | Ryuichi Takanobu | Feng-Lin Li | Ji Zhang | Haiqing Chen | Minlie Huang
Proceedings of the 4th Workshop on e-Commerce and NLP

User satisfaction estimation in the dialogue-based customer service is critical not only for helping developers find the system defects, but also making it possible to get timely human intervention for dissatisfied customers. In this paper, we investigate the problem of user satisfaction estimation in E-commerce customer service. In order to apply the estimator to online services for timely human intervention, we need to estimate the satisfaction score at each turn. However, in actual scenario we can only collect the satisfaction labels for the whole dialogue sessions via user feedback. To this end, we formalize the turn-level satisfaction estimation as a reinforcement learning problem, in which the model can be optimized with only session-level satisfaction labels. We conduct experiments on the dataset collected from a commercial customer service system, and compare our model with the supervised learning models. Extensive experiments show that the proposed method outperforms all the baseline models.

pdf bib
REPT: Bridging Language Models and Machine Reading Comprehension via Retrieval-Based Pre-training
Fangkai Jiao | Yangyang Guo | Yilin Niu | Feng Ji | Feng-Lin Li | Liqiang Nie
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

2017

pdf bib
AliMe Chat: A Sequence to Sequence and Rerank based Chatbot Engine
Minghui Qiu | Feng-Lin Li | Siyu Wang | Xing Gao | Yan Chen | Weipeng Zhao | Haiqing Chen | Jun Huang | Wei Chu
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

We propose AliMe Chat, an open-domain chatbot engine that integrates the joint results of Information Retrieval (IR) and Sequence to Sequence (Seq2Seq) based generation models. AliMe Chat uses an attentive Seq2Seq based rerank model to optimize the joint results. Extensive experiments show our engine outperforms both IR and generation based models. We launch AliMe Chat for a real-world industrial application and observe better results than another public chatbot.