Activation steering methods were shown to be effective in conditioning language model generation by additively intervening over models’ intermediate representations. However, the evaluation of these techniques has so far been limited to single conditioning properties and synthetic settings. In this work, we conduct a comprehensive evaluation of various activation steering strategies, highlighting the property-dependent nature of optimal parameters to ensure a robust effect throughout generation. To address this issue, we propose Dynamic Activation Composition, an information-theoretic approach to modulate the steering intensity of one or more properties throughout generation. Our experiments on multi-property steering show that our method successfully maintains high conditioning while minimizing the impact of conditioning on generation fluency.
Ensuring the verifiability of model answers is a fundamental challenge for retrieval-augmented generation (RAG) in the question answering (QA) domain. Recently, self-citation prompting was proposed to make large language models (LLMs) generate citations to supporting documents along with their answers. However, self-citing LLMs often struggle to match the required format, refer to non-existent sources, and fail to faithfully reflect LLMs’ context usage throughout the generation. In this work, we present MIRAGE – Model Internals-based RAG Explanations – a plug-and-play approach using model internals for faithful answer attribution in RAG applications. MIRAGE detects context-sensitive answer tokens and pairs them with retrieved documents contributing to their prediction via saliency methods. We evaluate our proposed approach on a multilingual extractive QA dataset, finding high agreement with human answer attribution. On open-ended QA, MIRAGE achieves citation quality and efficiency comparable to self-citation while also allowing for a finer-grained control of attribution parameters. Our qualitative evaluation highlights the faithfulness of MIRAGE’s attributions and underscores the promising application of model internals for RAG answer attribution. Code and data released at https://github.com/Betswish/MIRAGE.
In recent years, several interpretability methods have been proposed to interpret the inner workings of Transformer models at different levels of precision and complexity.In this work, we propose a simple but effective technique to analyze encoder-decoder Transformers. Our method, which we name DecoderLens, allows the decoder to cross-attend representations of intermediate encoder activations instead of using the default final encoder output.The method thus maps uninterpretable intermediate vector representations to human-interpretable sequences of words or symbols, shedding new light on the information flow in this popular but understudied class of models.We apply DecoderLens to question answering, logical reasoning, speech recognition and machine translation models, finding that simpler subtasks are solved with high precision by low and intermediate encoder layers.
We introduce IT5, the first family of encoder-decoder transformer models pretrained specifically on Italian. We document and perform a thorough cleaning procedure for a large Italian corpus and use it to pretrain four IT5 model sizes. We then introduce the ItaGen benchmark, which includes a broad range of natural language understanding and generation tasks for Italian, and use it to evaluate the performance of IT5 models and multilingual baselines. We find monolingual IT5 models to provide the best scale-to-performance ratio across tested models, consistently outperforming their multilingual counterparts and setting a new state-of-the-art for Italian language generation.
Pretrained character-level and byte-level language models have been shown to be competitive with popular subword models across a range of Natural Language Processing tasks. However, there has been little research on their effectiveness for neural machine translation (NMT), particularly within the popular pretrain-then-finetune paradigm. This work performs an extensive comparison across multiple languages and experimental conditions of character- and subword-level pretrained models (ByT5 and mT5, respectively) on NMT. We show the effectiveness of character-level modeling in translation, particularly in cases where fine-tuning data is limited. In our analysis, we show how character models’ gains in translation quality are reflected in better translations of orthographically similar words and rare words. While evaluating the importance of source texts in driving model predictions, we highlight word-level patterns within ByT5, suggesting an ability to modulate word-level and character-level information during generation. We conclude by assessing the efficiency tradeoff of byte models, suggesting their usage in non-time-critical scenarios to boost translation quality.
Attribute-controlled translation (ACT) is a subtask of machine translation that involves controlling stylistic or linguistic attributes (like formality and gender) of translation outputs. While ACT has garnered attention in recent years due to its usefulness in real-world applications, progress in the task is currently limited by dataset availability, since most prior approaches rely on supervised methods. To address this limitation, we propose Retrieval and Attribute-Marking enhanced Prompting (RAMP), which leverages large multilingual language models to perform ACT in few-shot and zero-shot settings. RAMP improves generation accuracy over the standard prompting approach by (1) incorporating a semantic similarity retrieval component for selecting similar in-context examples, and (2) marking in-context examples with attribute annotations. Our comprehensive experiments show that RAMP is a viable approach in both zero-shot and few-shot settings.
Past work in natural language processing interpretability focused mainly on popular classification tasks while largely overlooking generation settings, partly due to a lack of dedicated tools. In this work, we introduce Inseq, a Python library to democratize access to interpretability analyses of sequence generation models. Inseq enables intuitive and optimized extraction of models’ internal information and feature importance scores for popular decoder-only and encoder-decoder Transformers architectures. We showcase its potential by adopting it to highlight gender biases in machine translation models and locate factual knowledge inside GPT-2. Thanks to its extensible interface supporting cutting-edge techniques such as contrastive feature attribution, Inseq can drive future advances in explainable natural language generation, centralizing good practices and enabling fair and reproducible model evaluations.
Neural machine translation (NMT) systems are nowadays essential components of professional translation workflows. Consequently, human translators are increasingly working as post-editors for machine-translated content. The NWO-funded InDeep project aims to empower users of Deep Learning models of text, speech, and music by improving their ability to interact with such models and interpret their behaviors. In the specific context of translation, we aim at developing new tools and methodologies to improve prediction attribution, error analysis, and controllable generation for NMT systems. These advances will be evaluated through field studies involving professional translators to assess gains in efficiency and overall enjoyability of the post-editing process.
We introduce DivEMT, the first publicly available post-editing study of Neural Machine Translation (NMT) over a typologically diverse set of target languages. Using a strictly controlled setup, 18 professional translators were instructed to translate or post-edit the same set of English documents into Arabic, Dutch, Italian, Turkish, Ukrainian, and Vietnamese. During the process, their edits, keystrokes, editing times and pauses were recorded, enabling an in-depth, cross-lingual evaluation of NMT quality and post-editing effectiveness. Using this new dataset, we assess the impact of two state-of-the-art NMT systems, Google Translate and the multilingual mBART-50 model, on translation productivity. We find that post-editing is consistently faster than translation from scratch. However, the magnitude of productivity gains varies widely across systems and languages, highlighting major disparities in post-editing effectiveness for languages at different degrees of typological relatedness to English, even when controlling for system architecture and training data size. We publicly release the complete dataset including all collected behavioral data, to foster new research on the translation capabilities of NMT systems for typologically diverse languages.
This paper investigates the relationship between two complementary perspectives in the human assessment of sentence complexity and how they are modeled in a neural language model (NLM). The first perspective takes into account multiple online behavioral metrics obtained from eye-tracking recordings. The second one concerns the offline perception of complexity measured by explicit human judgments. Using a broad spectrum of linguistic features modeling lexical, morpho-syntactic, and syntactic properties of sentences, we perform a comprehensive analysis of linguistic phenomena associated with the two complexity viewpoints and report similarities and differences. We then show the effectiveness of linguistic features when explicitly leveraged by a regression model for predicting sentence complexity and compare its results with the ones obtained by a fine-tuned neural language model. We finally probe the NLM’s linguistic competence before and after fine-tuning, highlighting how linguistic information encoded in representations changes when the model learns to predict complexity.
We describe and make available the game-based material developed for a laboratory run at several Italian science festivals to popularize NLP among young students.
Although Natural Language Processing is at the core of many tools young people use in their everyday life, high school curricula (in Italy) do not include any computational linguistics education. This lack of exposure makes the use of such tools less responsible than it could be, and makes choosing computational linguistics as a university degree unlikely. To raise awareness, curiosity, and longer-term interest in young people, we have developed an interactive workshop designed to illustrate the basic principles of NLP and computational linguistics to high school Italian students aged between 13 and 18 years. The workshop takes the form of a game in which participants play the role of machines needing to solve some of the most common problems a computer faces in understanding language: from voice recognition to Markov chains to syntactic parsing. Participants are guided through the workshop with the help of instructors, who present the activities and explain core concepts from computational linguistics. The workshop was presented at numerous outlets in Italy between 2019 and 2020, both face-to-face and online.