Hanqi Yan


2024

pdf bib
Encourage or Inhibit Monosemanticity? Revisit Monosemanticity from a Feature Decorrelation Perspective
Hanqi Yan | Yanzheng Xiang | Guangyi Chen | Yifei Wang | Lin Gui | Yulan He
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

To better interpret the intrinsic mechanism of large language models (LLMs), recent studies focus on monosemanticity on its basic units. A monosemantic neuron is dedicated to a single and specific concept, which forms a one-to-one correlation between neurons and concepts. Despite extensive research in monosemanticity probing, it remains unclear whether monosemanticity is beneficial or harmful to model capacity. To explore this question, we revisit monosemanticity from the feature decorrelation perspective and advocate for its encouragement. We experimentally observe that the current conclusion by (CITATION), which suggests that decreasing monosemanticity enhances model performance, does not hold when the model changes. Instead, we demonstrate that monosemanticity consistently exhibits a positive correlation with model capacity, in the preference alignment process. Consequently, we apply feature correlation as a proxy for monosemanticity and incorporate a feature decorrelation regularizer into the dynamic preference optimization process. The experiments show that our method not only enhances representation diversity and activation sparsity but also improves preference alignment performance.

pdf bib
The Mystery of In-Context Learning: A Comprehensive Survey on Interpretation and Analysis
Yuxiang Zhou | Jiazheng Li | Yanzheng Xiang | Hanqi Yan | Lin Gui | Yulan He
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Understanding in-context learning (ICL) capability that enables large language models (LLMs) to excel in proficiency through demonstration examples is of utmost importance. This importance stems not only from the better utilization of this capability across various tasks, but also from the proactive identification and mitigation of potential risks, including concerns regarding truthfulness, bias, and toxicity, that may arise alongside the capability. In this paper, we present a thorough survey on the interpretation and analysis of in-context learning. First, we provide a concise introduction to the background and definition of in-context learning. Then, we give an overview of advancements from two perspectives: 1) a theoretical perspective, emphasizing studies on mechanistic interpretability and delving into the mathematical foundations behind ICL; and 2) an empirical perspective, concerning studies that empirically analyze factors associated with ICL. We conclude by discussing open questions and the challenges encountered, and suggesting potential avenues for future research. We believe that our work establishes the basis for further exploration into the interpretation of in-context learning. To aid this effort, we have created a repository containing resources that will be continually updated.

pdf bib
Weak Reward Model Transforms Generative Models into Robust Causal Event Extraction Systems
Italo Luis Da Silva | Hanqi Yan | Lin Gui | Yulan He
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

The inherent ambiguity of cause and effect boundaries poses a challenge in evaluating causal event extraction tasks. Traditional metrics like Exact Match and BertScore poorly reflect model performance, so we trained evaluation models to approximate human evaluation, achieving high agreement. We used them to perform Reinforcement Learning with extraction models to align them with human preference, prioritising semantic understanding. We successfully explored our approach through multiple datasets, including transferring an evaluator trained on one dataset to another as a way to decrease the reliance on human-annotated data. In that vein, we also propose a weak-to-strong supervision method that uses a fraction of the annotated data to train an evaluation model while still achieving high performance in training an RL model.

pdf bib
Addressing Order Sensitivity of In-Context Demonstration Examples in Causal Language Models
Yanzheng Xiang | Hanqi Yan | Lin Gui | Yulan He
Findings of the Association for Computational Linguistics: ACL 2024

In-context learning has become a popular paradigm in natural language processing. However, its performance can be significantly influenced by the order of in-context demonstration examples. In this paper, we found that causal language models (CausalLMs) are more sensitive to this order compared to prefix language models (PrefixLMs). We attribute this phenomenon to the auto-regressive attention masks within CausalLMs, which restrict each token from accessing information from subsequent tokens. This results in different receptive fields for samples at different positions, thereby leading to representation disparities across positions. To tackle this challenge, we introduce an unsupervised fine-tuning method, termed the Information-Augmented and Consistency-Enhanced approach. This approach utilizes contrastive learning to align representations of in-context examples across different positions and introduces a consistency loss to ensure similar representations for inputs with different permutations. This enhances the model’s predictive consistency across permutations. Experimental results on five benchmarks suggest that our proposed method can reduce the sensitivity of CausalLMs to the order of in-context examples and exhibit robust generalizability, particularly when demonstrations are sourced from a candidate pool different from that used in the training phase, or when the number of in-context examples differs from what is used during training.

pdf bib
Mirror: Multiple-perspective Self-Reflection Method for Knowledge-rich Reasoning
Hanqi Yan | Qinglin Zhu | Xinyu Wang | Lin Gui | Yulan He
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

While Large language models (LLMs) have the capability to iteratively reflect on their own outputs, recent studies have observed their struggles with knowledge-rich problems without access to external resources. In addition to the inefficiency of LLMs in self-assessment, we also observe that LLMs struggle to revisit their predictions despite receiving explicit negative feedback. Therefore, We propose Mirror, a Multiple-perspective self-reflection method for knowledge-rich reasoning, to avoid getting stuck at a particular reflection iteration. Mirror enables LLMs to reflect from multiple-perspective clues, achieved through a heuristic interaction between a Navigator and a Reasoner. It guides agents toward diverse yet plausibly reliable reasoning trajectory without access to ground truth by encouraging (1) diversity of directions generated by Navigator and (2) agreement among strategically induced perturbations in responses generated by the Reasoner. The experiments on five reasoning datasets demonstrate that Mirror’s superiority over several contemporary self-reflection approaches. Additionally, the ablation study studies clearly indicate that our strategies alleviate the aforementioned challenges.

2023

pdf bib
Distinguishability Calibration to In-Context Learning
Hongjing Li | Hanqi Yan | Yanran Li | Li Qian | Yulan He | Lin Gui
Findings of the Association for Computational Linguistics: EACL 2023

Recent years have witnessed increasing interests in prompt-based learning in which models can be trained on only a few annotated instances, making them suitable in low-resource settings. It is even challenging in fine-grained classification as the pre-trained language models tend to generate similar output embedding which makes it difficult to discriminate for the prompt-based classifier. In this work, we alleviate this information diffusion issue by proposing a calibration method based on a transformation which rotates the embedding feature into a new metric space where we adapt the ratio of each dimension to a uniform distribution to guarantee the distinguishability of learned embeddings. Furthermore, we take the advantage of hyperbolic embedding to capture the relation between dimensions by a coarse-fine metric learning strategy to enhance interpretability. Extensive experiments on the three datasets under various settings demonstrate the effectiveness of our approach.

pdf bib
Tracking Brand-Associated Polarity-Bearing Topics in User Reviews
Runcong Zhao | Lin Gui | Hanqi Yan | Yulan He
Transactions of the Association for Computational Linguistics, Volume 11

Monitoring online customer reviews is important for business organizations to measure customer satisfaction and better manage their reputations. In this paper, we propose a novel dynamic Brand-Topic Model (dBTM) which is able to automatically detect and track brand-associated sentiment scores and polarity-bearing topics from product reviews organized in temporally ordered time intervals. dBTM models the evolution of the latent brand polarity scores and the topic-word distributions over time by Gaussian state space models. It also incorporates a meta learning strategy to control the update of the topic-word distribution in each time interval in order to ensure smooth topic transitions and better brand score predictions. It has been evaluated on a dataset constructed from MakeupAlley reviews and a hotel review dataset. Experimental results show that dBTM outperforms a number of competitive baselines in brand ranking, achieving a good balance of topic coherence and uniqueness, and extracting well-separated polarity-bearing topics across time intervals.1

2022

pdf bib
Hierarchical Interpretation of Neural Text Classification
Hanqi Yan | Lin Gui | Yulan He
Computational Linguistics, Volume 48, Issue 4 - December 2022

Recent years have witnessed increasing interest in developing interpretable models in Natural Language Processing (NLP). Most existing models aim at identifying input features such as words or phrases important for model predictions. Neural models developed in NLP, however, often compose word semantics in a hierarchical manner. As such, interpretation by words or phrases only cannot faithfully explain model decisions in text classification. This article proposes a novel Hierarchical Interpretable Neural Text classifier, called HINT, which can automatically generate explanations of model predictions in the form of label-associated topics in a hierarchical manner. Model interpretation is no longer at the word level, but built on topics as the basic semantic unit. Experimental results on both review datasets and news datasets show that our proposed approach achieves text classification results on par with existing state-of-the-art text classifiers, and generates interpretations more faithful to model predictions and better understood by humans than other interpretable neural text classifiers.1

2021

pdf bib
Position Bias Mitigation: A Knowledge-Aware Graph Model for Emotion Cause Extraction
Hanqi Yan | Lin Gui | Gabriele Pergola | Yulan He
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)

The Emotion Cause Extraction (ECE) task aims to identify clauses which contain emotion-evoking information for a particular emotion expressed in text. We observe that a widely-used ECE dataset exhibits a bias that the majority of annotated cause clauses are either directly before their associated emotion clauses or are the emotion clauses themselves. Existing models for ECE tend to explore such relative position information and suffer from the dataset bias. To investigate the degree of reliance of existing ECE models on clause relative positions, we propose a novel strategy to generate adversarial examples in which the relative position information is no longer the indicative feature of cause clauses. We test the performance of existing models on such adversarial examples and observe a significant performance drop. To address the dataset bias, we propose a novel graph-based method to explicitly model the emotion triggering paths by leveraging the commonsense knowledge to enhance the semantic dependencies between a candidate clause and an emotion clause. Experimental results show that our proposed approach performs on par with the existing state-of-the-art methods on the original ECE dataset, and is more robust against adversarial attacks compared to existing models.

2019

pdf bib
LexicalAT: Lexical-Based Adversarial Reinforcement Training for Robust Sentiment Classification
Jingjing Xu | Liang Zhao | Hanqi Yan | Qi Zeng | Yun Liang | Xu Sun
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Recent work has shown that current text classification models are fragile and sensitive to simple perturbations. In this work, we propose a novel adversarial training approach, LexicalAT, to improve the robustness of current classification models. The proposed approach consists of a generator and a classifier. The generator learns to generate examples to attack the classifier while the classifier learns to defend these attacks. Considering the diversity of attacks, the generator uses a large-scale lexical knowledge base, WordNet, to generate attacking examples by replacing some words in training examples with their synonyms (e.g., sad and unhappy), neighbor words (e.g., fox and wolf), or super-superior words (e.g., chair and armchair). Due to the discrete generation step in the generator, we use policy gradient, a reinforcement learning approach, to train the two modules. Experiments show LexicalAT outperforms strong baselines and reduces test errors on various neural networks, including CNN, RNN, and BERT.