Spreadsheets are characterized by their extensive two-dimensional grids, flexible layouts, and varied formatting options, which pose significant challenges for large language models (LLMs). In response, we introduce SheetEncoder, pioneering an efficient encoding method designed to unleash and optimize LLMs’ powerful understanding and reasoning capability on spreadsheets. Initially, we propose a vanilla serialization approach that incorporates cell addresses, values, and formats. However, this approach was limited by LLMs’ token constraints, making it impractical for most applications. To tackle this challenge, three innovative modules are proposed to compress spreadsheets effectively: structural-anchor-based compression, inverse index translation, and data-format-aware aggregation. It significantly improves performance in spreadsheet table detection task, outperforming the vanilla approach by 25.6% in GPT4’s in-context learning setting. Moreover, fine-tuned LLM with SheetEncoder has an average compression ratio of 25×, but achieves a state-of-the-art 78.9% F1 score, surpassing the best existing models by 12.3%, demonstrating that SheetEncoder greatly boosts LLMs’s performance on spreadsheet data.
This paper explores capabilities of Vision Language Models on spreadsheet comprehension. We propose three self-supervised challenges with corresponding evaluation metrics to comprehensively evaluate VLMs on Optical Character Recognition (OCR), spatial perception, and visual format recognition. Additionally, we utilize the spreadsheet table detection task to assess the overall performance of VLMs by integrating these challenges. To probe VLMs more finely, we propose three spreadsheet-to-image settings: column width adjustment, style change, and address augmentation. We propose variants of prompts to address the above tasks in different settings. Notably, to leverage the strengths of VLMs in understanding text rather than two-dimensional positioning, we propose to decode cell values on the four boundaries of the table in spreadsheet boundary detection. Our findings reveal that VLMs demonstrate promising OCR capabilities but produce unsatisfactory results due to cell omission and misalignment, and they notably exhibit insufficient spatial and format recognition skills, motivating future work to enhance VLMs’ spreadsheet data comprehension capabilities using our methods to generate extensive spreadsheet-image pairs in various settings.
Writing formulas on spreadsheets, such as Microsoft Excel and Google Sheets, is a widespread practice among users performing data analysis. However, crafting formulas on spreadsheets remains a tedious and error-prone task for many end-users, particularly when dealing with complex operations. To alleviate the burden associated with writing spreadsheet formulas, this paper introduces a novel benchmark task called NL2Formula, with the aim to generate executable formulas that are grounded on a spreadsheet table, given a Natural Language (NL) query as input. To accomplish this, we construct a comprehensive dataset consisting of 70,799 paired NL queries and corresponding spreadsheet formulas, covering 21,670 tables and 37 types of formula functions. We realize the NL2Formula task by providing a sequence-to-sequence baseline implementation called fCoder. Experimental results validate the effectiveness of fCoder, demonstrating its superior performance compared to the baseline models. Furthermore, we also compare fCoder with an initial GPT-3.5 model (i.e., text-davinci-003). Lastly, through in-depth error analysis, we identify potential challenges in the NL2Formula task and advocate for further investigation.
Multi-Modal Large Language Models (MLLMs), despite being successful, exhibit limited generality and often fall short when compared to specialized models. Recently, LLM-based agents have been developed to address these challenges by selecting appropriate specialized models as tools based on user inputs. However, such advancements have not been extensively explored within the medical domain. To bridge this gap, this paper introduces the first agent explicitly designed for the medical field, named Multi-modal Medical Agent (MMedAgent). We curate an instruction-tuning dataset comprising six medical tools solving seven tasks across five modalities, enabling the agent to choose the most suitable tools for a given task. Comprehensive experiments demonstrate that MMedAgent achieves superior performance across a variety of medical tasks compared to state-of-the-art open-source methods and even the closed-source model, GPT-4o. Furthermore, MMedAgent exhibits efficiency in updating and integrating new medical tools.
Due to the concise and structured nature of tables, the knowledge contained therein may be incomplete or missing, posing a significant challenge for table question answering (TableQA) systems. However, most existing datasets either overlook the challenge of missing knowledge in TableQA or only utilize unstructured text as supplementary information for tables. In this paper, we propose to use a knowledge base (KB) as the external knowledge source for TableQA and construct a dataset KET-QA with fine-grained gold evidence annotation. Each table in the dataset corresponds to a sub-graph of the entire KB, and every question requires the integration of information from both the table and the sub-graph to be answered. To extract pertinent information from the vast knowledge sub-graph and apply it to TableQA, we design a retriever-reasoner structured pipeline model. Experimental results demonstrate that our model consistently achieves remarkable relative performance improvements ranging from 1.9 to 6.5 times on EM scores across three distinct settings (fine-tuning, zero-shot, and few-shot), in comparison with solely relying on table information. However, even the best model achieves a 60.23% EM score, which still lags behind the human-level performance, highlighting the challenging nature of KET-QA for the question-answering community.
We propose HermEs, the first approach for spreadsheet formula prediction via HiEraRchical forMulet ExpanSion, where hierarchical expansion means generating formulas following the underlying parse tree structure, and Formulet refers to commonly-used multi-level patterns mined from real formula parse trees. HermEs improves the formula prediction accuracy by (1) guaranteeing correct grammar by hierarchical generation rather than left-to-right generation and (2) significantly streamlining the token-level decoding with high-level Formulet. Notably, instead of generating formulas in a pre-defined fixed order, we propose a novel sampling strategy to systematically exploit a variety of hierarchical and multi-level expansion orders and provided solid mathematical proof, with the aim of meeting diverse human needs of the formula writing order in real applications. We further develop an interactive formula completion interface based on HermEs, which shows a new user experience in https://github.com/formulet/HERMES.
Tables are often created with hierarchies, but existing works on table reasoning mainly focus on flat tables and neglect hierarchical tables. Hierarchical tables challenge numerical reasoning by complex hierarchical indexing, as well as implicit relationships of calculation and semantics. We present a new dataset, HiTab, to study question answering (QA) and natural language generation (NLG) over hierarchical tables. HiTab is a cross-domain dataset constructed from a wealth of statistical reports and Wikipedia pages, and has unique characteristics: (1) nearly all tables are hierarchical, and (2) QA pairs are not proposed by annotators from scratch, but are revised from real and meaningful sentences authored by analysts. (3) to reveal complex numerical reasoning in statistical reports, we provide fine-grained annotations of quantity and entity alignment. Experiments suggest that this HiTab presents a strong challenge for existing baselines and a valuable benchmark for future research. Targeting hierarchical structure, we devise a hierarchy-aware logical form for symbolic reasoning over tables, which shows high effectiveness. Targeting table reasoning, we leverage entity and quantity alignment to explore partially supervised training in QA and conditional generation in NLG, and largely reduce spurious predictions in QA and produce better descriptions in NLG.
Tables store rich numerical data, but numerical reasoning over tables is still a challenge. In this paper, we find that the spreadsheet formula, a commonly used language to perform computations on numerical values in spreadsheets, is a valuable supervision for numerical reasoning in tables. Considering large amounts of spreadsheets available on the web, we propose FORTAP, the first exploration to leverage spreadsheet formulas for table pretraining. Two novel self-supervised pretraining objectives are derived from formulas, numerical reference prediction (NRP) and numerical calculation prediction (NCP). While our proposed objectives are generic for encoders, to better capture spreadsheet table layouts and structures, FORTAP is built upon TUTA, the first transformer-based method for spreadsheet table pretraining with tree attention. FORTAP outperforms state-of-the-art methods by large margins on three representative datasets of formula prediction, question answering, and cell type classification, showing the great potential of leveraging formulas for table pretraining.
Existing auto-regressive pre-trained language models (PLMs) like T5 and BART, have been well applied to table question answering by UNIFIEDSKG and TAPEX, respectively, and demonstrated state-of-the-art results on multiple benchmarks. However, auto-regressive PLMs are challenged by recent emerging numerical reasoning datasets, such as TAT-QA, due to the error-prone implicit calculation. In this paper, we present TaCube, to pre-compute aggregation/arithmetic results for the table in advance, so that they are handy and readily available for PLMs to answer numerical reasoning questions. TaCube systematically and comprehensively covers a collection of computational operations over table segments. By simply concatenating TaCube to the input sequence of PLMs, it shows significant experimental effectiveness. TaCube promotes the F1 score from 49.6% to 66.2% on TAT-QA and achieves new state-of-the-art results on WikiTQ (59.6% denotation accuracy). TaCube’s improvements on numerical reasoning cases are even more notable: on TAT-QA, TaCube promotes the exact match accuracy of BART-large by 39.6% on sum, 52.5% on average, 36.6% on substraction, and 22.2% on division. We believe that TaCube is a general and portable pre-computation solution that can be potentially integrated to various numerical reasoning frameworks
Logical table-to-text generation is a task that involves generating logically faithful sentences from tables, which requires models to derive logical-level facts from table records via logical inference. It raises a new challenge on the logical-level content planning of table-to-text models. However, directly learning the logical inference knowledge from table-text pairs is very difficult for neural models because of the ambiguity of natural language and the scarcity of parallel data. Hence even large-scale pre-trained language models present low logical fidelity on logical table-to-text. In this work, we propose a Pretrained Logical Form Generator (PLOG) framework to improve generation fidelity. Specifically, PLOG is first pretrained on a table-to-logical-form generation (table-to-logic) task, then finetuned on downstream table-to-text tasks. The logical forms are formally defined with unambiguous semantics. Hence we can collect a large amount of accurate logical forms from tables without human annotation. In addition, PLOG can learn logical inference from table-logic pairs much more reliably than from table-text pairs. To evaluate our model, we further collect a controlled logical table-to-text dataset CONTLOG based on an existing dataset. On two benchmarks, LOGICNLG and CONTLOG, PLOG outperforms strong baselines by a large margin on the logical fidelity, demonstrating the effectiveness of table-to-logic pretraining.