Haozhe Zhang
2024
Embedding and Gradient Say Wrong: A White-Box Method for Hallucination Detection
Xiaomeng Hu
|
Yiming Zhang
|
Ru Peng
|
Haozhe Zhang
|
Chenwei Wu
|
Gang Chen
|
Junbo Zhao
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
In recent years, large language models (LLMs) have achieved remarkable success in the field of natural language generation. Compared to previous small-scale models, they are capable of generating fluent output based on the provided prefix or prompt. However, one critical challenge — the *hallucination* problem — remains to be resolved. Generally, the community refers to the undetected hallucination scenario where the LLMs generate text unrelated to the input text or facts. In this study, we intend to model the distributional distance between the regular conditional output and the unconditional output, which is generated without a given input text. Based upon Taylor Expansion for this distance at the output probability space, our approach manages to leverage the embedding and first-order gradient information. The resulting approach is plug-and-play that can be easily adapted to any autoregressive LLM. On the hallucination benchmarks HADES and other datasets, our approach achieves state-of-the-art performance.
2023
Unleashing the Power of Language Models in Text-Attributed Graph
Haoyu Kuang
|
Jiarong Xu
|
Haozhe Zhang
|
Zuyu Zhao
|
Qi Zhang
|
Xuanjing Huang
|
Zhongyu Wei
Findings of the Association for Computational Linguistics: EMNLP 2023
Representation learning on graph has been demonstrated to be a powerful tool for solving real-world problems. Text-attributed graph carries both semantic and structural information among different types of graphs. Existing works have paved the way for knowledge extraction of this type of data by leveraging language models or graph neural networks or combination of them. However, these works suffer from issues like underutilization of relationships between nodes or words or unaffordable memory cost. In this paper, we propose a Node Representation Update Pre-training Architecture based on Co-modeling Text and Graph (NRUP). In NRUP, we construct a hierarchical text-attributed graph that incorporates both original nodes and word nodes. Meanwhile, we apply four self-supervised tasks for different level of constructed graph. We further design the pre-training framework to update the features of nodes during training epochs. We conduct the experiment on the benchmark dataset ogbn-arxiv. Our method achieves outperformance compared to baselines, fully demonstrating its validity and generalization.
One-Model-Connects-All: A Unified Graph Pre-Training Model for Online Community Modeling
Ruoxue Ma
|
Jiarong Xu
|
Xinnong Zhang
|
Haozhe Zhang
|
Zuyu Zhao
|
Qi Zhang
|
Xuanjing Huang
|
Zhongyu Wei
Findings of the Association for Computational Linguistics: EMNLP 2023
Online community is composed of communities, users, and user-generated textual content, with rich information that can help us solve social problems. Previous research hasn’t fully utilized these three components and the relationship among them. What’s more, they can’t adapt to a wide range of downstream tasks. To solve these problems, we focus on a framework that simultaneously considers communities, users, and texts. And it can easily connect with a variety of downstream tasks related to social media. Specifically, we use a ternary heterogeneous graph to model online communities. Text reconstruction and edge generation are used to learn structural and semantic knowledge among communities, users, and texts. By leveraging this pre-trained model, we achieve promising results across multiple downstream tasks, such as violation detection, sentiment analysis, and community recommendation. Our exploration will improve online community modeling.
Search
Fix data
Co-authors
- Xuan-Jing Huang (黄萱菁) 2
- Zhongyu Wei (魏忠钰) 2
- Jiarong Xu 2
- Qi Zhang 2
- Zuyu Zhao 2
- show all...