Haryo Akbarianto Wibowo


2025

pdf bib
WorldCuisines: A Massive-Scale Benchmark for Multilingual and Multicultural Visual Question Answering on Global Cuisines
Genta Indra Winata | Frederikus Hudi | Patrick Amadeus Irawan | David Anugraha | Rifki Afina Putri | Wang Yutong | Adam Nohejl | Ubaidillah Ariq Prathama | Nedjma Ousidhoum | Afifa Amriani | Anar Rzayev | Anirban Das | Ashmari Pramodya | Aulia Adila | Bryan Wilie | Candy Olivia Mawalim | Cheng Ching Lam | Daud Abolade | Emmanuele Chersoni | Enrico Santus | Fariz Ikhwantri | Garry Kuwanto | Hanyang Zhao | Haryo Akbarianto Wibowo | Holy Lovenia | Jan Christian Blaise Cruz | Jan Wira Gotama Putra | Junho Myung | Lucky Susanto | Maria Angelica Riera Machin | Marina Zhukova | Michael Anugraha | Muhammad Farid Adilazuarda | Natasha Christabelle Santosa | Peerat Limkonchotiwat | Raj Dabre | Rio Alexander Audino | Samuel Cahyawijaya | Shi-Xiong Zhang | Stephanie Yulia Salim | Yi Zhou | Yinxuan Gui | David Ifeoluwa Adelani | En-Shiun Annie Lee | Shogo Okada | Ayu Purwarianti | Alham Fikri Aji | Taro Watanabe | Derry Tanti Wijaya | Alice Oh | Chong-Wah Ngo
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Vision Language Models (VLMs) often struggle with culture-specific knowledge, particularly in languages other than English and in underrepresented cultural contexts. To evaluate their understanding of such knowledge, we introduce WorldCuisines, a massive-scale benchmark for multilingual and multicultural, visually grounded language understanding. This benchmark includes a visual question answering (VQA) dataset with text-image pairs across 30 languages and dialects, spanning 9 language families and featuring over 1 million data points, making it the largest multicultural VQA benchmark to date. It includes tasks for identifying dish names and their origins. We provide evaluation datasets in two sizes (12k and 60k instances) alongside a training dataset (1 million instances). Our findings show that while VLMs perform better with correct location context, they struggle with adversarial contexts and predicting specific regional cuisines and languages. To support future research, we release a knowledge base with annotated food entries and images along with the VQA data.

2021

pdf bib
IndoCollex: A Testbed for Morphological Transformation of Indonesian Colloquial Words
Haryo Akbarianto Wibowo | Made Nindyatama Nityasya | Afra Feyza Akyürek | Suci Fitriany | Alham Fikri Aji | Radityo Eko Prasojo | Derry Tanti Wijaya
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021

pdf bib
BERT Goes Brrr: A Venture Towards the Lesser Error in Classifying Medical Self-Reporters on Twitter
Alham Fikri Aji | Made Nindyatama Nityasya | Haryo Akbarianto Wibowo | Radityo Eko Prasojo | Tirana Fatyanosa
Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task

This paper describes our team’s submission for the Social Media Mining for Health (SMM4H) 2021 shared task. We participated in three subtasks: Classifying adverse drug effect, COVID-19 self-report, and COVID-19 symptoms. Our system is based on BERT model pre-trained on the domain-specific text. In addition, we perform data cleaning and augmentation, as well as hyperparameter optimization and model ensemble to further boost the BERT performance. We achieved the first rank in both classifying adverse drug effects and COVID-19 self-report tasks.

2018

pdf bib
Cross-Lingual and Supervised Learning Approach for Indonesian Word Sense Disambiguation Task
Rahmad Mahendra | Heninggar Septiantri | Haryo Akbarianto Wibowo | Ruli Manurung | Mirna Adriani
Proceedings of the 9th Global Wordnet Conference

Ambiguity is a problem we frequently face in Natural Language Processing. Word Sense Disambiguation (WSD) is a task to determine the correct sense of an ambiguous word. However, research in WSD for Indonesian is still rare to find. The availability of English-Indonesian parallel corpora and WordNet for both languages can be used as training data for WSD by applying Cross-Lingual WSD method. This training data is used as an input to build a model using supervised machine learning algorithms. Our research also examines the use of Word Embedding features to build the WSD model.