Jingqi Tong
2024
LLaMA-MoE: Building Mixture-of-Experts from LLaMA with Continual Pre-Training
Tong Zhu
|
Xiaoye Qu
|
Daize Dong
|
Jiacheng Ruan
|
Jingqi Tong
|
Conghui He
|
Yu Cheng
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Mixture-of-Experts (MoE) has gained increasing popularity as a promising framework for scaling up large language models (LLMs). However, training MoE from scratch in a large-scale setting still suffers from data-hungry and instability problems. Motivated by this limit, we investigate building MoE models from existing dense large language models. Specifically, based on the well-known LLaMA-2 7B model, we obtain an MoE model by: (1) Expert Construction, which partitions the parameters of original Feed-Forward Networks (FFNs) into multiple experts; (2) Continual pre-training, which further trains the transformed MoE model and additional gate networks. In this paper, we comprehensively explore different methods for expert construction and various data sampling strategies for continual pre-training. After these stages, our LLaMA-MoE models could maintain language abilities and route the input tokens to specific experts with part of the parameters activated. Empirically, by training 200B tokens, LLaMA-MoE-3.5B models significantly outperform dense models that contain similar activation parameters.
Exploring the Compositional Deficiency of Large Language Models in Mathematical Reasoning Through Trap Problems
Jun Zhao
|
Jingqi Tong
|
Yurong Mou
|
Ming Zhang
|
Qi Zhang
|
Xuanjing Huang
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Human cognition exhibits systematic compositionality, the algebraic ability to generate infinite novel combinations from finite learned components, which is the key to understanding and reasoning about complex logic. In this work, we investigate the compositionality of large language models (LLMs) in mathematical reasoning. Specifically, we construct a new dataset MathTrap by introducing carefully designed logical traps into the problem descriptions of MATH and GSM8K. Since problems with logical flaws are quite rare in the real world, these represent “unseen” cases to LLMs. Solving these requires the models to systematically compose (1) the mathematical knowledge involved in the original problems with (2) knowledge related to the introduced traps. Our experiments show that while LLMs possess both components of requisite knowledge, they do not spontaneously combine them to handle these novel cases. We explore several methods to mitigate this deficiency, such as natural language prompts, few-shot demonstrations, and fine-tuning. We find that LLMs’ performance can be improved through the above external intervention. Overall, systematic compositionality remains an open challenge for large language models.
Search
Co-authors
- Tong Zhu 1
- Xiaoye Qu 1
- Daize Dong 1
- Jiacheng Ruan 1
- Conghui He 1
- show all...