Traditionally, natural language processing (NLP) models often use a rich set of features created by linguistic expertise, such as semantic representations. However, in the era of large language models (LLMs), more and more tasks are turned into generic, end-to-end sequence generation problems. In this paper, we investigate the question: what is the role of semantic representations in the era of LLMs? Specifically, we investigate the effect of Abstract Meaning Representation (AMR) across five diverse NLP tasks. We propose an AMR-driven chain-of-thought prompting method, which we call AMRCOT, and find that it generally hurts performance more than it helps. To investigate what AMR may have to offer on these tasks, we conduct a series of analysis experiments. We find that it is difficult to predict which input examples AMR may help or hurt on, but errors tend to arise with multi-word expressions, named entities, and in the final inference step where the LLM must connect its reasoning over the AMR to its prediction. We recommend focusing on these areas for future work in semantic representations for LLMs. Our code: https://github.com/causalNLP/amr_llm
We present the results of the NLP Community Metasurvey. Run from May to June 2022, it elicited opinions on controversial issues, including industry influence in the field, concerns about AGI, and ethics. Our results put concrete numbers to several controversies: For example, respondents are split in half on the importance of artificial general intelligence, whether language models understand language, and the necessity of linguistic structure and inductive bias for solving NLP problems. In addition, the survey posed meta-questions, asking respondents to predict the distribution of survey responses. This allows us to uncover false sociological beliefs where the community’s predictions don’t match reality. Among other results, we find that the community greatly overestimates its own belief in the usefulness of benchmarks and the potential for scaling to solve real-world problems, while underestimating its belief in the importance of linguistic structure, inductive bias, and interdisciplinary science.
I propose a paradigm for scientific progress in NLP centered around developing scalable, data-driven theories of linguistic structure. The idea is to collect data in tightly scoped, carefully defined ways which allow for exhaustive annotation of behavioral phenomena of interest, and then use machine learning to construct explanatory theories of these phenomena which can form building blocks for intelligible AI systems. After laying some conceptual groundwork, I describe several investigations into data-driven theories of shallow semantic structure using Question-Answer driven Semantic Role Labeling (QA-SRL), a schema for annotating verbal predicate-argument relations using highly constrained question-answer pairs. While this only scratches the surface of the complex language behaviors of interest in AI, I outline principles for data collection and theoretical modeling which can inform future scientific progress. This note summarizes and draws heavily on my PhD thesis.
Ambiguity is an intrinsic feature of natural language. Managing ambiguity is a key part of human language understanding, allowing us to anticipate misunderstanding as communicators and revise our interpretations as listeners. As language models are increasingly employed as dialogue interfaces and writing aids, handling ambiguous language is critical to their success. We capture ambiguity in a sentence through its effect on entailment relations with another sentence, and collect AmbiEnt, a linguist-annotated benchmark of 1,645 examples with diverse kinds of ambiguity. We design a suite of tests based on AmbiEnt, presenting the first evaluation of pretrained LMs to recognize ambiguity and disentangle possible meanings. We find that the task remains extremely challenging, including for GPT-4, whose generated disambiguations are considered correct only 32% of the time in crowdworker evaluation, compared to 90% for disambiguations in our dataset. Finally, to illustrate the value of ambiguity-sensitive tools, we show that a multilabel NLI model can flag political claims in the wild that are misleading due to ambiguity. We encourage the field to rediscover the importance of ambiguity for NLP.
Retrieval-augmented language models (LMs) use non-parametric memory to substantially outperform their non-retrieval counterparts on perplexity-based evaluations, but it is an open question whether they achieve similar gains in few- and zero-shot end-task accuracy. We extensively study one such model, the k-nearest neighbor LM (kNN-LM), showing that the gains marginally transfer. The main challenge is to achieve coverage of the verbalizer tokens that define the different end-task class labels. To address this challenge, we also introduce kNN-Prompt, a simple and effective kNN-LM with automatically expanded fuzzy verbalizers (e.g. to expand “terrible” to also include “silly” and other task-specific synonyms for sentiment classification). Across nine diverse end-tasks, using kNN-Prompt with GPT-2 large yields significant performance boosts over strong zeroshot baselines (13.4% absolute improvement over the base LM on average). We also show that other advantages of non-parametric augmentation hold for end tasks; kNN-Prompt is effective for domain adaptation with no further training, and gains increase with the size of the retrieval model.
Adversarial data collection has shown promise as a method for building models which are more robust to the spurious correlations that generally appear in naturalistic data. However, adversarially-collected data may itself be subject to biases, particularly with regard to ambiguous or arguable labeling judgments. Searching for examples where an annotator disagrees with a model might over-sample ambiguous inputs, and filtering the results for high inter-annotator agreement may under-sample them. In either case, training a model on such data may produce predictable and unwanted biases. In this work, we investigate whether models trained on adversarially-collected data are miscalibrated with respect to the ambiguity of their inputs. Using Natural Language Inference models as a testbed, we find no clear difference in accuracy between naturalistically and adversarially trained models, but our model trained only on adversarially-sourced data is considerably more overconfident of its predictions and demonstrates worse calibration, especially on ambiguous inputs. This effect is mitigated, however, when naturalistic and adversarial training data are combined.
Asking questions about a situation is an inherent step towards understanding it. To this end, we introduce the task of role question generation, which, given a predicate mention and a passage, requires producing a set of questions asking about all possible semantic roles of the predicate. We develop a two-stage model for this task, which first produces a context-independent question prototype for each role and then revises it to be contextually appropriate for the passage. Unlike most existing approaches to question generation, our approach does not require conditioning on existing answers in the text. Instead, we condition on the type of information to inquire about, regardless of whether the answer appears explicitly in the text, could be inferred from it, or should be sought elsewhere. Our evaluation demonstrates that we generate diverse and well-formed questions for a large, broad-coverage ontology of predicates and roles.
Question-answer driven Semantic Role Labeling (QA-SRL) was proposed as an attractive open and natural flavour of SRL, potentially attainable from laymen. Recently, a large-scale crowdsourced QA-SRL corpus and a trained parser were released. Trying to replicate the QA-SRL annotation for new texts, we found that the resulting annotations were lacking in quality, particularly in coverage, making them insufficient for further research and evaluation. In this paper, we present an improved crowdsourcing protocol for complex semantic annotation, involving worker selection and training, and a data consolidation phase. Applying this protocol to QA-SRL yielded high-quality annotation with drastically higher coverage, producing a new gold evaluation dataset. We believe that our annotation protocol and gold standard will facilitate future replicable research of natural semantic annotations.
Ambiguity is inherent to open-domain question answering; especially when exploring new topics, it can be difficult to ask questions that have a single, unambiguous answer. In this paper, we introduce AmbigQA, a new open-domain question answering task which involves finding every plausible answer, and then rewriting the question for each one to resolve the ambiguity. To study this task, we construct AmbigNQ, a dataset covering 14,042 questions from NQ-open, an existing open-domain QA benchmark. We find that over half of the questions in NQ-open are ambiguous, with diverse sources of ambiguity such as event and entity references. We also present strong baseline models for AmbigQA which we show benefit from weakly supervised learning that incorporates NQ-open, strongly suggesting our new task and data will support significant future research effort. Our data and baselines are available at https://nlp.cs.washington.edu/ambigqa.
The success of pretrained contextual encoders, such as ELMo and BERT, has brought a great deal of interest in what these models learn: do they, without explicit supervision, learn to encode meaningful notions of linguistic structure? If so, how is this structure encoded? To investigate this, we introduce latent subclass learning (LSL): a modification to classifier-based probing that induces a latent categorization (or ontology) of the probe’s inputs. Without access to fine-grained gold labels, LSL extracts emergent structure from input representations in an interpretable and quantifiable form. In experiments, we find strong evidence of familiar categories, such as a notion of personhood in ELMo, as well as novel ontological distinctions, such as a preference for fine-grained semantic roles on core arguments. Our results provide unique new evidence of emergent structure in pretrained encoders, including departures from existing annotations which are inaccessible to earlier methods.
We present data and methods that enable a supervised learning approach to Open Information Extraction (Open IE). Central to the approach is a novel formulation of Open IE as a sequence tagging problem, addressing challenges such as encoding multiple extractions for a predicate. We also develop a bi-LSTM transducer, extending recent deep Semantic Role Labeling models to extract Open IE tuples and provide confidence scores for tuning their precision-recall tradeoff. Furthermore, we show that the recently released Question-Answer Meaning Representation dataset can be automatically converted into an Open IE corpus which significantly increases the amount of available training data. Our supervised model outperforms the existing state-of-the-art Open IE systems on benchmark datasets.
We introduce Question-Answer Meaning Representations (QAMRs), which represent the predicate-argument structure of a sentence as a set of question-answer pairs. We develop a crowdsourcing scheme to show that QAMRs can be labeled with very little training, and gather a dataset with over 5,000 sentences and 100,000 questions. A qualitative analysis demonstrates that the crowd-generated question-answer pairs cover the vast majority of predicate-argument relationships in existing datasets (including PropBank, NomBank, and QA-SRL) along with many previously under-resourced ones, including implicit arguments and relations. We also report baseline models for question generation and answering, and summarize a recent approach for using QAMR labels to improve an Open IE system. These results suggest the freely available QAMR data and annotation scheme should support significant future work.
We present a new large-scale corpus of Question-Answer driven Semantic Role Labeling (QA-SRL) annotations, and the first high-quality QA-SRL parser. Our corpus, QA-SRL Bank 2.0, consists of over 250,000 question-answer pairs for over 64,000 sentences across 3 domains and was gathered with a new crowd-sourcing scheme that we show has high precision and good recall at modest cost. We also present neural models for two QA-SRL subtasks: detecting argument spans for a predicate and generating questions to label the semantic relationship. The best models achieve question accuracy of 82.6% and span-level accuracy of 77.6% (under human evaluation) on the full pipelined QA-SRL prediction task. They can also, as we show, be used to gather additional annotations at low cost.
Human ability to understand language is general, flexible, and robust. In contrast, most NLU models above the word level are designed for a specific task and struggle with out-of-domain data. If we aspire to develop models with understanding beyond the detection of superficial correspondences between inputs and outputs, then it is critical to develop a unified model that can execute a range of linguistic tasks across different domains. To facilitate research in this direction, we present the General Language Understanding Evaluation (GLUE, gluebenchmark.com): a benchmark of nine diverse NLU tasks, an auxiliary dataset for probing models for understanding of specific linguistic phenomena, and an online platform for evaluating and comparing models. For some benchmark tasks, training data is plentiful, but for others it is limited or does not match the genre of the test set. GLUE thus favors models that can represent linguistic knowledge in a way that facilitates sample-efficient learning and effective knowledge-transfer across tasks. While none of the datasets in GLUE were created from scratch for the benchmark, four of them feature privately-held test data, which is used to ensure that the benchmark is used fairly. We evaluate baselines that use ELMo (Peters et al., 2018), a powerful transfer learning technique, as well as state-of-the-art sentence representation models. The best models still achieve fairly low absolute scores. Analysis with our diagnostic dataset yields similarly weak performance over all phenomena tested, with some exceptions.