In light of recent breakthroughs in large language models (LLMs) that have revolutionized natural language processing (NLP), there is an urgent need for new benchmarks to keep pace with the fast development of LLMs. In this paper, we propose CFLUE, the Chinese Financial Language Understanding Evaluation benchmark, designed to assess the capability of LLMs across various dimensions. Specifically, CFLUE provides datasets tailored for both knowledge assessment and application assessment. In knowledge assessment, it consists of 38K+ multiple-choice questions with associated solution explanations. These questions serve dual purposes: answer prediction and question reasoning. In application assessment, CFLUE features 16K+ test instances across distinct groups of NLP tasks such as text classification, machine translation, relation extraction, reading comprehension, and text generation. Upon CFLUE, we conduct a thorough evaluation of representative LLMs. The results reveal that only Qwen-72B, GPT-4, and GPT-4-turbo achieve an accuracy exceeding 60% in answer prediction for knowledge assessment, suggesting that there is still substantial room for improvement in current LLMs. In application assessment, while GPT-4 and GPT-4-turbo rank as the top two performers on average, their significant advantage over open-source LLMs is noticeably diminished, given that Qwen-72B achieves the best performance in 2 out of 5 tasks. The datasets and scripts associated with CFLUE are openly accessible at https://github.com/aliyun/cflue.
Lexical translation consistency is one of the most common discourse phenomena in Chinese-to-English document-level translation. To better evaluate the performance of lexical translation consistency, previous researches assumes that all repeated source words should be translated consistently. However, constraining translations of repeated source words to be consistent will hurt word diversity and human translators tend to use different words in translation. Therefore, in this paper we construct a test set of 310 bilingual news articles to properly evaluate lexical translation consistency. We manually differentiate those repeated source words whose translations are consistent into two types: true consistency and false consistency. Then based on the constructed test set, we evaluate the performance of lexical translation consistency for several typical NMT systems.
Thanks to the development of pre-trained sequence-to-sequence (seq2seq) models (e.g., BART), recent studies on AMR parsing often regard this task as a seq2seq translation problem by linearizing AMR graphs into AMR token sequences in pre-processing and recovering AMR graphs from sequences in post-processing. Seq2seq AMR parsing is a relatively simple paradigm but it unavoidably loses structural information among AMR tokens. To compensate for the loss of structural information, in this paper we explicitly leverage AMR structure in the decoding phase. Given an AMR graph, we first project the structure in the graph into an AMR token graph, i.e., structure among AMR tokens in the linearized sequence. The structures for an AMR token could be divided into two parts: structure in prediction history and structure in future. Then we propose to model structure in prediction history via a graph attention network (GAT) and learn structure in future via a multi-task scheme, respectively. Experimental results show that our approach significantly outperforms a strong baseline and achieves performance with 85.5 ±0.1 and 84.2 ±0.1 Smatch scores on AMR 2.0 and AMR 3.0, respectively
Large Language Models (LLMs) have demonstrated impressive performances across various NLP tasks with just a few prompts via in-context learning. Previous studies have emphasized the pivotal role of well-chosen examples in in-context learning, as opposed to randomly selected instances that exhibits unstable results.A successful example selection scheme depends on multiple factors, while in the context of LLMs-based machine translation, the common selection algorithms only consider the single factor, i.e., the similarity between the example source sentence and the input sentence.In this paper, we introduce a novel approach to use multiple translational factors for in-context example selection by using monotone submodular function maximization.The factors include surface/semantic similarity between examples and inputs on both source and target sides, as well as the diversity within examples.Importantly, our framework mathematically guarantees the coordination between these factors, which are different and challenging to reconcile.Additionally, our research uncovers a previously unexamined dimension: unlike other NLP tasks, the translation part of an example is also crucial, a facet disregarded in prior studies.Experiments conducted on BLOOMZ-7.1B and LLAMA2-13B, demonstrate that our approach significantly outperforms random selection and robust single-factor baselines across various machine translation tasks.
Following the idea of “one translation per discourse”, in this paper we aim to improve translation consistency via document-level translation repair (DocRepair), i.e., automatic post-editing on translations of documents. To this end, we propose a lexical translation inconsistency-aware DocRepair to explicitly model translation inconsistency. First we locate the inconsistency in automatic translation. Then we provide translation candidates for those inconsistency. Finally, we propose lattice-like input to properly model inconsistent tokens and phrases and their candidates. Experimental results on three document-level translation datasets show that based on G-Transformer, a state-of-the-art document-to-document (Doc2Doc) translation model, our Doc2Doc DocRepair achieves significant improvement on translation quality in BLEU scores, but also greatly improves lexical translation consistency.
In this paper we aim to relieve the issue of lexical translation inconsistency for document-level neural machine translation (NMT) by modeling consistency preference for lexical chains, which consist of repeated words in a source-side document and provide a representation of the lexical consistency structure of the document. Specifically, we first propose lexical-consistency attention to capture consistency context among words in the same lexical chains. Then for each lexical chain we define and learn a consistency-tailored latent variable, which will guide the translation of corresponding sentences to enhance lexical translation consistency. Experimental results on Chinese→English and French→English document-level translation tasks show that our approach not only significantly improves translation performance in BLEU, but also substantially alleviates the problem of the lexical translation inconsistency.
In this paper we describe our submission to the shared tasks of the 9th Workshop on Asian Translation (WAT 2022) on NICT–SAP under the team name ”HwTscSU”. The tasks involve translation from 5 languages into English and vice-versa in two domains: IT domain and Wikinews domain. The purpose is to determine the feasibility of multilingualism, domain adaptation or document-level knowledge given very little to none clean parallel corpora for training. Our approach for all translation tasks mainly focused on pre-training NMT models on general datasets and fine-tuning them on domain-specific datasets. Due to the small amount of parallel corpora, we collected and cleaned the OPUS dataset including three IT domain corpora, i.e., GNOME, KDE4, and Ubuntu. We then trained Transformer models on the collected dataset and fine-tuned on corresponding dev set. The BLEU scores greatly improved in comparison with other systems. Our submission ranked 1st in all IT-domain tasks and in one out of eight ALT domain tasks.
Due to the scarcity of annotated data, Abstract Meaning Representation (AMR) research is relatively limited and challenging for languages other than English. Upon the availability of English AMR dataset and English-to- X parallel datasets, in this paper we propose a novel cross-lingual pre-training approach via multi-task learning (MTL) for both zeroshot AMR parsing and AMR-to-text generation. Specifically, we consider three types of relevant tasks, including AMR parsing, AMR-to-text generation, and machine translation. We hope that knowledge gained while learning for English AMR parsing and text generation can be transferred to the counterparts of other languages. With properly pretrained models, we explore four different finetuning methods, i.e., vanilla fine-tuning with a single task, one-for-all MTL fine-tuning, targeted MTL fine-tuning, and teacher-studentbased MTL fine-tuning. Experimental results on AMR parsing and text generation of multiple non-English languages demonstrate that our approach significantly outperforms a strong baseline of pre-training approach, and greatly advances the state of the art. In detail, on LDC2020T07 we have achieved 70.45%, 71.76%, and 70.80% in Smatch F1 for AMR parsing of German, Spanish, and Italian, respectively, while for AMR-to-text generation of the languages, we have obtained 25.69, 31.36, and 28.42 in BLEU respectively. We make our code available on github https://github.com/xdqkid/XLPT-AMR.
抽象语义表示(Abstract Meaning Representation,简称AMR)是将给定的文本的语义特征抽象成一个单根的有向无环图。AMR语义解析则是根据输入的文本获取对应的AMR图。相比于英文AMR,中文AMR的研究起步较晚,造成针对中文的AMR语义解析相关研究较少。本文针对公开的中文AMR语料库CAMR1.0,采用序列到序列的方法进行中文AMR语义解析的相关研究。具体地,首先基于Transformer模型实现一个适用于中文的序列到序列AMR语义解析系统;然后,探索并比较了不同预训练模型在中文AMR语义解析中的应用。基于该语料,本文中文AMR语义解析方法最优性能达到了70.29的Smatch F1值。本文是第一次在该数据集上报告实验结果。
Recently a number of approaches have been proposed to improve translation performance for document-level neural machine translation (NMT). However, few are focusing on the subject of lexical translation consistency. In this paper we apply “one translation per discourse” in NMT, and aim to encourage lexical translation consistency for document-level NMT. This is done by first obtaining a word link for each source word in a document, which tells the positions where the source word appears. Then we encourage the translation of those words within a link to be consistent in two ways. On the one hand, when encoding sentences within a document we properly share context information of those words. On the other hand, we propose an auxiliary loss function to better constrain that their translation should be consistent. Experimental results on Chinese↔English and English→French translation tasks show that our approach not only achieves state-of-the-art performance in BLEU scores, but also greatly improves lexical consistency in translation.
Aspect terms extraction (ATE) and aspect sentiment classification (ASC) are two fundamental and fine-grained sub-tasks in aspect-level sentiment analysis (ALSA). In the textual analysis, joint extracting both aspect terms and sentiment polarities has been drawn much attention due to the better applications than individual sub-task. However, in the multi-modal scenario, the existing studies are limited to handle each sub-task independently, which fails to model the innate connection between the above two objectives and ignores the better applications. Therefore, in this paper, we are the first to jointly perform multi-modal ATE (MATE) and multi-modal ASC (MASC), and we propose a multi-modal joint learning approach with auxiliary cross-modal relation detection for multi-modal aspect-level sentiment analysis (MALSA). Specifically, we first build an auxiliary text-image relation detection module to control the proper exploitation of visual information. Second, we adopt the hierarchical framework to bridge the multi-modal connection between MATE and MASC, as well as separately visual guiding for each sub module. Finally, we can obtain all aspect-level sentiment polarities dependent on the jointly extracted specific aspects. Extensive experiments show the effectiveness of our approach against the joint textual approaches, pipeline and collapsed multi-modal approaches.
In the literature, the research on abstract meaning representation (AMR) parsing is much restricted by the size of human-curated dataset which is critical to build an AMR parser with good performance. To alleviate such data size restriction, pre-trained models have been drawing more and more attention in AMR parsing. However, previous pre-trained models, like BERT, are implemented for general purpose which may not work as expected for the specific task of AMR parsing. In this paper, we focus on sequence-to-sequence (seq2seq) AMR parsing and propose a seq2seq pre-training approach to build pre-trained models in both single and joint way on three relevant tasks, i.e., machine translation, syntactic parsing, and AMR parsing itself. Moreover, we extend the vanilla fine-tuning method to a multi-task learning fine-tuning method that optimizes for the performance of AMR parsing while endeavors to preserve the response of pre-trained models. Extensive experimental results on two English benchmark datasets show that both the single and joint pre-trained models significantly improve the performance (e.g., from 71.5 to 80.2 on AMR 2.0), which reaches the state of the art. The result is very encouraging since we achieve this with seq2seq models rather than complex models. We make our code and model available at https://github.com/xdqkid/S2S-AMR-Parser.
As an important research issue in the natural language processing community, multi-label emotion detection has been drawing more and more attention in the last few years. However, almost all existing studies focus on one modality (e.g., textual modality). In this paper, we focus on multi-label emotion detection in a multi-modal scenario. In this scenario, we need to consider both the dependence among different labels (label dependence) and the dependence between each predicting label and different modalities (modality dependence). Particularly, we propose a multi-modal sequence-to-set approach to effectively model both kinds of dependence in multi-modal multi-label emotion detection. The detailed evaluation demonstrates the effectiveness of our approach.
Neural conversation models such as encoder-decoder models are easy to generate bland and generic responses. Some researchers propose to use the conditional variational autoencoder (CVAE) which maximizes the lower bound on the conditional log-likelihood on a continuous latent variable. With different sampled latent variables, the model is expected to generate diverse responses. Although the CVAE-based models have shown tremendous potential, their improvement of generating high-quality responses is still unsatisfactory. In this paper, we introduce a discrete latent variable with an explicit semantic meaning to improve the CVAE on short-text conversation. A major advantage of our model is that we can exploit the semantic distance between the latent variables to maintain good diversity between the sampled latent variables. Accordingly, we propose a two-stage sampling approach to enable efficient diverse variable selection from a large latent space assumed in the short-text conversation task. Experimental results indicate that our model outperforms various kinds of generation models under both automatic and human evaluations and generates more diverse and informative responses.
Recent studies on AMR-to-text generation often formalize the task as a sequence-to-sequence (seq2seq) learning problem by converting an Abstract Meaning Representation (AMR) graph into a word sequences. Graph structures are further modeled into the seq2seq framework in order to utilize the structural information in the AMR graphs. However, previous approaches only consider the relations between directly connected concepts while ignoring the rich structure in AMR graphs. In this paper we eliminate such a strong limitation and propose a novel structure-aware self-attention approach to better model the relations between indirectly connected concepts in the state-of-the-art seq2seq model, i.e. the Transformer. In particular, a few different methods are explored to learn structural representations between two concepts. Experimental results on English AMR benchmark datasets show that our approach significantly outperforms the state-of-the-art with 29.66 and 31.82 BLEU scores on LDC2015E86 and LDC2017T10, respectively. To the best of our knowledge, these are the best results achieved so far by supervised models on the benchmarks.
In the popular sequence to sequence (seq2seq) neural machine translation (NMT), there exist many weighted sum models (WSMs), each of which takes a set of input and generates one output. However, the weights in a WSM are independent of each other and fixed for all inputs, suggesting that by ignoring different needs of inputs, the WSM lacks effective control on the influence of each input. In this paper, we propose adaptive weighting for WSMs to control the contribution of each input. Specifically, we apply adaptive weighting for both GRU and the output state in NMT. Experimentation on Chinese-to-English translation and English-to-German translation demonstrates that the proposed adaptive weighting is able to much improve translation accuracy by achieving significant improvement of 1.49 and 0.92 BLEU points for the two translation tasks. Moreover, we discuss in-depth on what type of information is encoded in the encoder and how information influences the generation of target words in the decoder.
In neural machine translation, a source sequence of words is encoded into a vector from which a target sequence is generated in the decoding phase. Differently from statistical machine translation, the associations between source words and their possible target counterparts are not explicitly stored. Source and target words are at the two ends of a long information processing procedure, mediated by hidden states at both the source encoding and the target decoding phases. This makes it possible that a source word is incorrectly translated into a target word that is not any of its admissible equivalent counterparts in the target language. In this paper, we seek to somewhat shorten the distance between source and target words in that procedure, and thus strengthen their association, by means of a method we term bridging source and target word embeddings. We experiment with three strategies: (1) a source-side bridging model, where source word embeddings are moved one step closer to the output target sequence; (2) a target-side bridging model, which explores the more relevant source word embeddings for the prediction of the target sequence; and (3) a direct bridging model, which directly connects source and target word embeddings seeking to minimize errors in the translation of ones by the others. Experiments and analysis presented in this paper demonstrate that the proposed bridging models are able to significantly improve quality of both sentence translation, in general, and alignment and translation of individual source words with target words, in particular.
Even though a linguistics-free sequence to sequence model in neural machine translation (NMT) has certain capability of implicitly learning syntactic information of source sentences, this paper shows that source syntax can be explicitly incorporated into NMT effectively to provide further improvements. Specifically, we linearize parse trees of source sentences to obtain structural label sequences. On the basis, we propose three different sorts of encoders to incorporate source syntax into NMT: 1) Parallel RNN encoder that learns word and label annotation vectors parallelly; 2) Hierarchical RNN encoder that learns word and label annotation vectors in a two-level hierarchy; and 3) Mixed RNN encoder that stitchingly learns word and label annotation vectors over sequences where words and labels are mixed. Experimentation on Chinese-to-English translation demonstrates that all the three proposed syntactic encoders are able to improve translation accuracy. It is interesting to note that the simplest RNN encoder, i.e., Mixed RNN encoder yields the best performance with an significant improvement of 1.4 BLEU points. Moreover, an in-depth analysis from several perspectives is provided to reveal how source syntax benefits NMT.